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Abstract

This work describes a speech fundamental period
estimation algorithm that estimates the fime of
excitation of the vocal tract using a pattern classifier, the
multi-layer perceptron (MLP). The pattern classifier
was trained using speech semi-automatically labelled
by means of an algorithm that makes use of the output
from a Laryngograph. Various issues arising in the
fraining of the system were explored. Three basic
configurations_of the system were compared using
different pre—processing strategies. it was found that
processingthe sampled speechtime—waveform directly
with the pattern classifier gave better results than using
oneof two filterbanks. The performance of the algorithm
was evaluated against that of a simple peak—picking
algorithm and the well known cepstrum algorithm using
quantitative frequency contour comparisons. The
performance of the new algorithmon adifficult set of test
data was shown to be better than the peak—picker and
Gomparable to the cepstrum algorithm. The advantage
of the scheme is that fundamental period estimates are
made on a period—by—period basis, thus preserving the
irregularity in the speech excitation that is lost by
techniques that produce as average period estimate. In
addition, its simple structure lends itself to real-time
implementation (Howard & Walliker, 9; Walliker &
Howard, 14).

Introduction

Speech fundamental frequency estimation has long
been the subject of much investigation, and two basic
approaches to the problem can be classified as those
that use shori~term or time domain analyses (Hess,
1983). Short-term analyses typically result in an
average estimate of fundamental frequency over a
short-time (for example, 20ms). However, with some
time-domain approaches, it is possible to perform
speech fundamental period estimation, in which the
estimate of the time of occurrence of excitation takes
place on a period—by—period basis. Such an approach
isdesirable inthose cases whenone wishestoretainthe
irregularity that is inevitably present in the speech
excitation which are lost by short—term analysis.

This paper presents a brief account of a system thathas
been developed to detect tha cycle~by-cycle excitation
of the vocaltract, which thus provides a cycle-by—cycle
of speech fundamental period. Afullaccountof the work
presented in this paper appears in Howard (6) and ina
more compact cut—-down form in Howard (7).

Basic principle of operation

The algorithm described here formulates speech
fundamental period estimation as a pattern recognition
problem. The overall system schematic diagram is
shown in figure 1. The input speech signal is first
conditioned (using anti-alias filters and then a 12-bit
A/D converter running at 8kHz). Nextthere is a

pre—processing stage, to format the system to suit the
patternclassifier (thatis, to scale ininputrange 1o +-1 .0)
and emphasise the important aspects of the input. In
this paper, three different pre—processing. schemes
weore considered. A 6-channel filterbank with. filter
bandwidths equivalent to a wideband spectrogram
(300Hz) covering the frequency range of 50Hz-3kHz, a
19—channel fitterbank with filter bandwidths based on
auditory bandwidths (Holdsworth et al., 4) and another
scheme using no filtering at all. The frame rate for the
filterbank schemes was 2kHz, whereas it remained at
8kHz for the direct speech scheme. The pattemn
classifier itself has the task of making the decision as to
the presence or absence of an excitation in the input.
Finally, the post—processing stage detects the ‘oufput
from the dassifier if it is above a threshold value and
converts the result into the desired format

We shall now concentrate of the function of the pattern
classifier stage. Consider the case when we observe a
series of speech samples ahead in time of the current
one, as well as the same number past in time from the
present one. This is the same scenario as in a
symmetrical FIR fitter, in which the filter has access o
both past and future samples of the input signal. The
input vector to the pattern classifier is definedina similar
way as resulting from the input samples. (or slements in
the input frames) of the data over an equivalent input
window. In this case, the output from the pattern
classifier is either one of two possible classes: Either
there is a period excitation present. at-a the current
frame, or there is not. . During recognition mode, it is the
task of the classifier to detect the excitation points in the
input speech signal. During the training phase of the
algorithm, it is necessary 1o specify the occurrences of
the vocal fold excitations so that the pattern classifier
can be trained, and this is done by means of an
interactive algorithm that uses™ the output “from a
Laryngograph (Fourcin & Abberton, 2). This is a simple
device that measures the electrical admittance across
the larynx at the level of the vocal folds. Changes of
vocal fold contact show up well in its output, and this’
provides a means of the identification of the point of
maximum vocal tract excitation using only simple
processing.

Labelling the training and test data

This algorithm used to identify the points of vocal fold
excitation operates in two phases. Firstly, an automatic
procedure differentiates the Laryngograph waveform
and then applies a simple local threshold analysis to it.
This results in a first estimate of the location of the vocal
fold excitation points. An interactive algorithm is then
used, whereby an operator can zoom in and view the
input speech, Laryngograph and differentiated
Laryngograph waveforms and edit the estimated
excitation points. In addtion, afacility is provided sothat
unreliable sections of wavelorm can be rejected and not
used for further analysis. The labelled datacanthenbe




used to train the MLP péltem classifier.

The database

To train and test the MLP algorithm, two phonetically
balanced passages were used. These comprised "The
story of Arthur the Rat * (Abercomie, 1) and “The
Rainbow Passage * (Mermelstein, 10). For training,
both passages were used in their entirety for 4 female
spoeakers. For testing, one paragraph (about 15
seconds of speech) for each of 20 female spoakers was
used. Females were used because earlier work had
established resulls for male speakers (Howard &
Huckvale, 8). Recordings were made In natqrally
reverberant and noisy conditions (such as offices,
lounges) at a range of distances between 30cm and
200cm.

The training database was recorded so that the effect of
head movements were minimised. This manifests itself
as a non—constant delay between the speech pressure
waveform and the Laryngograph waveform. Unless this
delay is constant, it is very difficult to correct for . Itis
clearly necessary to compensate for this time delay
because it is ditferent for different recording distances
and 1o ensure that allthe training data is saN—cons|§tenl.
all training data must have the excitation labels aligned
consistently with the corresponding speech pressure
waveform.

Alignment of the training data was carried out using @
"bootstrap” procedure. This involved Initially aligning
one section of speech and Laryngograph data such that
the peaks in the speech aligned with the point of
maximumgradientin the Laryngograph waveform. This
data was then used 1o train a speech-input MLP-Tx
algorithm. The partially trained MLP-Tx alggrgihm was
then run on the remained of the speech training data.
The cross—correlation between the local peaks in the
MLP output and the local peaks in the differentiated
Laryngograph waveform were then eompylod. The
results appears in figure 2. The location of the
corss—correlation maximum provides the delay
between the speech and Laryngograph waveform and
this was used to align the two waveforms. Notice that
the cross—correlation also provides a reliable method of
speech polarity determination. Figure 3 shows the
effect of speech inversion of the corss—~correlation. In
this case, the maximum is much less pronounced.

After alignment has been achieved, the MLP algorithm
generated an output that is time-aligned to the point of
maximum gradient in the Laryngograph waveform, as
shown in figure 4.

it was not necessary to use constant distance recording
for the testing data because the frequency contour
comparisons employed wera not significantly affected
by the movement of the subject's head.

Selective emphasis training of the MLP .

Training the MLP classifier was carried out using the
back—propagation. learning rule (Rumelhart et al., 13).
However, it was found that normal training was
excoedingly slow and certain additional procedures

ware used. These all make use of the ideaof selectively -

emphasizing training pattern vectors depending upon

theirimportance. This was done with regard to two main
criteria: Firstly, a pattern that occurs at the boundary of
the excitation period is de—emphasised , becaussé of the
similarity that # may have (in patten space) with its
neighbours. if such a pattern was not de—emphasised,
forcing it into one of two classes would affect the
recognition of other patterns that are similar, but in the
otherclass. Secondly, patterns are only used if they are
wrongly recognized (that is, if they evoke a response
from the classifier during training that is further from the
target value than apreset threshold). Inthis was training
can concentrate on those patterns that are falsely
classifier and ignore those which are correctly
classified. In this way computation is not wasted on
making insignificant weight changes.

Processing the test data

The MLP algorithm was run in its three different
configuration on the test data set, together with a
cepstrum algorithm and a peak-picker (Howard, 5)
algorithm (Nol, 11). The cepstrum algorithm operated
with an input window of 30ms and was chosen because
it is an established standard. The peak-picker is a
simple time~domain algorithm that operates by locating
the peaks in the speech waveform, due to the excitation
whilst suppressing those due to harmonics of formant
resonances. It was used becausae it is the algorithm the
MLP-Tx systemisto replace. The output period marker
was found by a simple threshold algorithm that located
the local maximum over arange of 10ms forward and 10
back from the current sample in the output from the MLP
classifier. The reciprocal of the period value was then
computed to give as estimate of the local equivalent
fundamental frequency.

Frequency contour comparisons

The algorithms were evaluated using frequency contour
comparisons (Rabiner et al., 12). This paper reports the
voiced—lo-unvoiced errors, the unvoiced-to—voiced
errors and the chirp and drop gross errors generated by
the algorithm, where a chirp error is defined as one in
which the test frequency contour exceeds the value of
the reference infrequency at aframe by more than 10%,
whereas a drop error is defined as one in which the test
frequency contour is lower than value of the reference
in frequency at a frame by more than 10%.

Conclusions

The results to the frequency contour comparisons
appear in figures 4-7. Ht can be seen that the direct
speech pre—processing gave fewer chirp and drop
emorsthanthe otherfitterbanks. In addition, the auditory
fiterbank gave better results than the €-channel
wideband filterbank. Interms of voicing determination,
it can be seen thatthe MLP algorithm gave better results
than the peak—picker or cepstrum algorithms. The drop
and chirp errors for the cepstrum were lower for the
cepstrum than for the MLP algorithm, but is must be
borne in mind that the former included averaging over
the input window and a gross error correction routine,
whereas the MLP algorithm used a simple threshold
algorithm on the.output of the classifier.
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FIGURE 2

TOP TRACE: EFFECT OF CROSS-CORRELATING PERIOD MARKERS FROM PARTIALLY TRAINED MLP-TX
ALGORITHM AND PERIOD MARKERS FROM LARYNGOGRAPH WITH SPEECH OF CORRECT POLARITY.
BOTTOM TRACE: EFFECT OF CROSS~CORRELATING PERIOD MARKERS FROM PARTIALLY TRAINED
MLP-TX ALGORITHM AND PERIOD MARKERS FROM LARYNGOGRAPH WITH SPEECH OF INVERTED
POLARITY.
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FIGURE 3
DIAGRAM SHOWING SPEECH PRESSURE WAVEFORM IN TRACE A, OUTPUT FROM MLP-TX ALGORITHM
IN TRACE B, ALIGNED LARYNGOGRAPH WAVEFORM IN TRACE C AND ALIGNED PERIOD MARKERS IN
TRACED.
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FIGURE 7
FIGURE 6 CHIRP GROSS ERRORS FOR ALGORITHMS
DROP GROSS ERRORS FOR ALGORITHMS UNDER UNDER TEST.




