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ABSTRACT 

The problem investigated concerns the robust estimation of fundamental period, only on 

the basis of representative speech pressure waveforms. The work has involved the 

design and development of a set of algorithms. The main intended application is in 

pattern processing acoustic and cochlear implant hearing aids. Essentially the task is to 

infer from the acoustic evidence available the points in time at which vocal fold closures 

occur. Its accomplishments both gives fundamental period information on a cycle-by- 

cycle basis and provides information concerning whether voicing is present. 

The task of detecting the point of closure of the vocal folds is formulated as a pattern 

recognition problem, and the pattern recognition technique employed uses the multi-layer 

perceptron (MLP). The first system configurations investigated were based on a pre- 

processing of the speech pressure waveform by a wide-band filterbank analyzer. This 

gave an input to the classifier which consisted of a set of adjacent time frames from the 

output of the filterbank. The output from the classifier was defined as being in one of 

two classes. In the first there is a period epoch marker at a given output frame, in the 

second there is not. This first classifier was trained to generate an output which 

signified the presence of a vocal fold closure at the centre of its input window. The 

fundamental periods between successive vocal-fold closures defined by these epoch 

markers, are given the name Tx. The labelling of both training and test data was 

performed semi-automatically by means of an algorithm that makes use of the output 

of a laryngograph. 

Developments of this first approach were then explored. These were primarily directed 

towards methods for reducing the training time for the MLP and improving the time 

resolution of the fundamental period estimates. Different pre-processing stages were 

investigated and these included direct operation on the speech pressure waveform and 

the use of a simplified auditory filterbank. Methods to reduce the computation load 

required for practical implementation were examined and these resulted in a system 

using a low-order filterbank together with a smaller MLP network. The last 

configuration was of practical interest because it had a processing load small enough to 



be run in real-time on a portable DSP system. A real-time system was implemented in 

conjunction with Mr. John Walliker. First patient results using this system are reported 

following perceptual assessments made by Dr. Andrew Faulkner. 

A number of objective assessment techniques were developed and used to permit 

quantitative comparisons between fundamental period estimation algorithms to be carried 

out. These involved both quantitative comparisons between frequency contours and 

between time excitation epoch markers. Using these comparisons, various different 

configurations of the MLP-Tx algorithm were evaluated over a wide range of speakers 

and environmental conditions. The performance of the MLP-Tx algorithm was also 

compared against that of established fundamental frequency estimation algorithms, and 

its performance in competing noise was found to be better than that obtainable by the 

use of the peak-picking approach previously employed. 
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CHAPTER 1: THE AIMS OF THE WORK 

1.1 AIMS OF THE WORK 

1.1.1 Speech fundamental period estimation 

This work is concerned with the design and development of an algorithm (MLP-Tx) that 

can perform speech fundamental period estimation. The algorithm has been specifically 

developed to perform fundamental period estimation for a signal processing hearing aid 

designed by the EPI group at UCL which seeks to provide from the acoustic speech 

signal an output which corresponds to that from the laryngograph (Walliker et al., 1986; 

Rosen et al., 1987). 

The novel aspect of the work stems from the fact that the task is formulated as a pattern 

recognition problem and the MLP-Tx algorithm, based on a multi-layer perceptron 

pattern classifier, was trained-byexample to perform the required task. The data that 

was used to train the algorithm was composed of speech that was semi-automatically 

labelled for fundamental period location using a pair of algorithms that made use of the 

output of a laryngograph, which was recorded simultaneously with the speech. The 

fundamental periods were delineated in terms of the closure of the vocal folds as a 

function of time, as defined by the location of the maximum positive differential in the 

output of the laryngograph. 

One of the strengths of the MLP-Tx algorithm is that the fundamental period estimates 

are made on a cycle-by-cycle basis. Consequently irregularities in vocal fold vibration 

can be detected by the algorithm, whereas many other algorithms would tend to smooth 

the period values. Creaky voice can be dealt with effectively using the MLP-Tx 

algorithm, whereas many other algorithms treat this important larynx excitation as being 

unvoiced due to its intrinsic irregularity. 

Another strength of the MLP-Tx algorithm is that it operates robustly in the presence 

of noise. 



The MLP-Tx algorithm is also suitable for real-time implementation because of the 

simple uniform structure of the MLP, and the inherently small (about 1Oms) input to 

output delay. This small delay is important to prevent a lack of synchronization 

between the speech signal and gestures and lip movements made by a speaker. A 

practical real-time implementation for use in hearing aids for the profoundly hearing 

impaired has been carried out in conjunction with John Walliker (Howard & Walliker 

1989; Walliker & Howard, 1990). 

There are many other applications for fundamental period estimation algorithms, some 

of which are discussed below, since this an important component in the description of 

vocal fold vibration. There is a genuine need for algorithms that are robust and will 

operate in real environmental conditions. 

It is important to be able to assess the performance of a fundamental period estimation 

algorithm, so that improvements can be evaluated and so that its performance with 

respect to other techniques can be gauged. To this end some work on speech 

fundamental period estimation algorithm comparison techniques was also carried out. 

1.1.2 Applications of speech fundamental period estimation 

Cochlear implants 

One application for algorithms that can perform speech fundamental period estimation 

is in signal processing hearing aids (Fourcin et al., 1983). Such hearing aids are of 

value to the profoundly deaf. They operate by extracting basic elements of speech and 

presenting this reduced representation in a suitable format to the patient either 

acoustically or directly onto the cochlea by electrical stimulation. It has been shown 

that presenting voice fundamental period feature alone can be more beneficial to some 

patients than presenting an amplified version of the whole speech signal (Rosen et al., 

1987). The main reason for this is that the auditory systems of this class of patients has 

a very restricted channel capacity which is less than that required to encode adequately 

the whole speech signal. Consequently presentation of the whole speech signal maybe 



confusing and even painful, whereas a basic fundamental period (frequency) signal can 

be made much easier for the patient to interpret usefully. 

In the case of single channel cochlear implants, the information from the pattern element 

extractor sent into the hearing system of the patient must all be present in the one signal 

(unlike in multi-channel implants). This is the approach adopted by the EPI group at 

UCL (Walliker et al., 1986). The elements used by the EPI group are chosen to be 

simplified aspects of speech that, when suitably coded, are matched to the residual 

discriminative abilities of the patients (Fourcin, 1979; Faulkner, Ball & Fourcin, 1990; 

Walliker et al., 1985). 

Speech fundamental frequency is a particularly useful feature to present to the 

profoundly deaf because it is almost completely invisible to the lip-reader and 

consequently it provides an aid to lipreading and the development of voiced speech 

production. There is particular benefit to be derived from the use of an algorithm that 

can perform fundamental period estimation on a cycle-by-cycle basis for such signal 

processing hearing aid applications. This is because preservation of the irregularity 

present in the original speech excitation is beneficial because the patient can then hear 

creaky and other irregular voice characteristics (Abberton et al., 1985). For these 

applications the algorithm must run in real-time with a processing delay between input 

and output should be as small as possible, and no more that a maximum of 40ms, or the 

signal looses its usefulness (McGrath & Summerfield ,1985). The MLP-Tx algorithm 

is therefore particularly suitable for such applications, because it possesses both of these 

qualities. 

Speech Coding 

The transmission and storage of speech by electronic (and optical) means is very widely 

carried out in modern society. The cost of the transmission and storage of a signal is 

clearly dependent on the data-rate of the signal. For example the greater the data-rate 

required to specify a speech signal, the fewer the speech channels that can be carried 

down one telephone transmission cable. Consequently there is great interest in  



techniques in speech processing that will reduce the data-rate necessary for 

communication by speech, since it reduces costs. 

Much work has been carried out in the field of speech coding with the goal of reducing 

the data-rate needed for speech transmission. For example especially important 

contributions have been made by Dudley (1939), Gabor, (1947), Lawrence, (1953), 

Schroeder (1966), and Gold & Rader, (1967). In essence, such schemes work by taking 

advantage of the observation that there is a correlation between adjacent time samples 

of the speech signal. Consequently it is not necessary to transmit each original data 

sample, as would be the case if all the data samples were un-correlated. 

Many coding schemes that aim to reduce the data-rate in the transmission of speech 

assume a source-filter model of speech production and require the determination of 

speech fundamental frequency (Willis, 1829; Fant, 1960). Such schemes can be 

considered as speech analysis/synthesis systems, and include Gabor's system, Dudley's 

vocoder, the channel vocoder (Flanagan, 1972) and copy synthesis (Lawrence, 1953). 

Speech and Speaker Recognition 

Another application of information relating to speech excitation is in automatic speech 

recognition. The incorporation of such information into the recognition process has been 

demonstrated as beneficial to the recognition task (Atal, 1974; Rosenberg & Sambur, 

1975). In addition, fundamental period information has been shown to be useful in 

speaker recognition, by both man and machine (Atal, 1972; Abbenon, 1974; Abberton, 

1976). 

Glottal-synchronous speech analysis 

The individual identification of speech fundamental period is also useful in providing 

a means to cany out glottal-synchronous analysis of speech. The idea behind this 

technique is that when, for example, performing a short-time spectral analysis of the 

speech, the window for the analysis is selected on a period-by-period basis to include 



input over only one period, rather than using a fixed window size for the analyses. It 

has been found that such an approach can give better estimates of the vocal tract transfer 

function than using fixed window analysis (Hunt & Harvenberg, 1986; Pearce & 

Whitaker, 1986; Hunt, Zwierzynski & Can, 1989). To carry out this task requires the 

identification of the vocal fold closure points, and this is on of the tasks performed by 

the MLP-Tx algorithm. 

1.2 ORGANIZATION OF THE THESIS 

The body of the thesis is organized in the following manner: 

Chapter 2 provides a brief discussion of acoustic, articulatory and phonetic descriptions 

of the speech signal. Properties of the voice source are then examined, with particular 

reference to their correlates with the output of a laryngograph. 

Chapter 3 explores some of the issues involved in speech fundamental frequency and 

period estimation. The basic requirements for algorithms that are to perform such a task 

are discussed and these include the required frequency resolution for a given application 

and the benefits of average or cycle-by-cycle estimates. A description of the different 

approaches used in fundamental frequency estimation is then given. 

Chapter 4 gives a more detailed discussion of the operation of some established 

techniques used for speech fundamental frequency and period estimation. Among those 

mentioned are the Gold-Rabiner algorithm, the SIFT algorithm, Auto-correlation analysis 

and the Cepstrum algorithm. Finally, the use of the laryngograph for fundamental 

period estimation is introduced. 

Chapter 5 describes the detailed implementation a fundamental period estimation system 

using a laryngograph. This involves an automatic analysis of the laryngograph 

waveform followed by an interactive analysis of the laryngograph and speech 

waveforms. This was the reference used in this thesis to provide fundamental period 

excitation epoch markers used both to train and test the MLP-Tx algorithm. 



Chapter 6 describes some standard techniques for assessing the performance of speech 

fundamental frequency estimation algorithms. In addition, some methods newly 

developed for the present work are discussed and explained. Details of how both 

established and new sets of comparisons were implemented is then given. 

Chapter 7 provides a brief overview of pattern recognition. Some classical approaches 

to pattern classification are discussed and these include the Nearest neighbour and k- 

means classifiers, and classification based on the use of likelihood functions, such as the 

Bayes' classifier. The more recent field of artificial neural networks is then introduced. 

There is then a more in-depth description of a currently popular connectionist technique, 

the multi-layer Perceptron (MLP). Methods for reducing training times for the MLP are 

then described. 

Chapter 8 formulates speech fundamental period estimation as a pattern recognition 

problem. The basic idea is discussed and qualitative results to some initial experiments 

are given. 

Chapter 9 investigates the problem of speech fundamental period estimation using 

pattern classification in greater depth. Issues concerning input pre-processing and output 

post-processing are discussed. The requirement for the appropriate databases, to train 

and test the MLP-Tx algorithm, are examined. These issues are experimentally 

investigated, and quantitative results are given for different system configurations. A 

final set of experiments was then carried out on a different set of test data, in which 

three of the best MLP-Tx algorithm configurations were compared with established 

fundamental frequency estimation techniques. 

Chapter 10 takes a closer look at the operation of some of the MLP networks. The 

patterns of MLP weights are displayed and the intermediate node activations are given 

for some of the algorithms during the process of detecting a fundamental period epoch 

marker. The sources of error in the MLP-Tx algorithm are examined, to give a basis 

for future improvements. 



Chapter 11 considers the problems involved of running the MLP-Tx algorithm in real- 

time using a digital signal processing chip. Computational complexity is then 

considered and a reduced computation algorithm is described. The effects of quantizing 

the weights and using a look-up table for the sigmoid non-linearity are investigated. 

Perceptual evaluation by Dr. Andrew Faulkner are then described briefly with normal 

and profoundly deaf listeners of the real-time MLP-Tx algorithm in its intended role in 

the EPI signal processing hearing aid. The results obtained demonstrate that the real- 

time MLP-Tx algorithm outperforms the peak-picker algorithm in the presence of pink 

noise. 

Chapter 12 then gives a brief review of the main points emerging from the thesis. 

The appendices contain other material that is appropriate to be included for reference 

purposes, but constitutes extra information that would be rather too much effort to read 

to warrant putting in the main body of the thesis. There is an analysis of the command 

line arguments and the computer output generated at each stage of processing, to enable 

other researchers to use the software developed in the course of this thesis. A 

description of the pattern processing system used to train and test the MLP classifier in 

appendix A.1. In appendix A.2, there then follows an analysis of the computer 

programs that were written for this work, as well as other existing SFS programs, and 

their subsequent use in the training and testing of the MLP-Tx algorithm. The reading 

passages, used to train and test the MLP-Tx algorithm, are given in appendices A.3 and 

A.4. Appendix A S  shows the questionnaire filled in by all the speakers. Appendix A.6 

shows the frequency histograms for the training and two sets of testing data. Appendix 

A.7 gives a list of the speakers, the passages and the recording conditions used in the 

testing and training data. Appendix A.8 gives quantitative results from preliminary tests 

of the MLP-Tx algorithm, in which different configurations of the MLP were 

investigated. 



CHAPTER 2: THE PRODUCTION AND DESCRIPTION OF SPEECH 

2.1 SPEECH PRODUCTlON 

2.1.1 Introduction 

This chapter provides a basis for the subsequent discussion of the speech related 

problems encountered as different stages of the work in this thesis. Firstly there is a 

general discussion of the origin and nature of the speech signal. There then follows 

articulatory, phonetic and mathematical descriptions of speech. Finally, voiced speech 

is discussed together with its relationship to the output from a laryngograph. 

2.1.2 The speech signal 

Speech provides human beings a means for the transmission of a complex message using 

sound. It is a signal that is very resistant to interference. Speech may still be 

intelligible even when the signal is distorted or heavily contaminated with interfering 

noise, although the quality of the speech will be reduced by such a process. 

2.1.3 Origins of speech 

The development of spoken language in humans was limited by constraints of evolution 

(Borden & Hanis, 1980). Speech communication must be consistent with the available 

broadcast facilities (the speech centres in the brain and human vocal apparatus) and 

decoding system (the human auditory system). The organs of the body used for the 

production of speech, the vocal organs and respiratory apparatus, were originally evolved 

to permit breathing of air and the chewing and swallowing of food. However in the 

course of evolution, they have also been used to provide a means of communication 

using sound. 

The use of speech as a means of communication is only possible because the code for 

the signal, that is the language system, is known to both speaker and listener. This 



system determines the important sound contrasts and prosody. 

2.1.4 The hierarchical nature of the speech signal 

The hierarchical nature of the speech signal arises from its structured generation process 

(Borden & Hanis, 1980). Some of the stages are illustrated in figure 2.1. Within the 

human brain, the speech centres contain information concerning the generation of 

speech. The phonological system used, the grammar and syntax of the language and the 

vocabulary are all implicitly represented. A possible description of the processes 

involved in speech production could be as follows: Let us suppose the top of this 

structure involves a cognitive level of representation where different system activity 

relates to different "ideas". The first step in speech generation involves a process which 

effectively arranges ones thoughts into the desired linguistic form and selects appropriate 

words and phrases to describe one's intended message. In addition these units must then 

be put into the correct temporal order as required by the grammar of the language. 

Then consideration to the different sound contrasts necessary for the given language and 

accent must be made. This could be thought of as corresponding to a phonemic level 

of processing. The message must next give rise to the signals necessary to control the 

muscles in the vocal apparatus. Finally, the physical behaviour of air in the vocal 

apparatus gives rise to an acoustic disturbance that radiates from the lips, andor nose, 

carrying the message. The overall result of this coordinated activity is the radiation of 

sound from the speaker, a small part of which finally reaches the listener. Thus in the 

speech production process, there is a transformation between a linguistic to a 

physiological to an acoustic representation of the message. These successive layers form 

a hierarchically organised structure which can be used as a basis for similarly structured 

computer-based analysis of speech, as described in the next section. 

Reception of the speech sounds in the listener results in processing with a reverse effect. 

There is a transformation from information in sound, to movement in the eardrum to 

nerve impulses in the auditory nerve and then finally activity in the higher centres in the 

brain. 



2.1 .S Descriptions of the speech signal 

There are several different ways in which one can describe speech. One may use the 

ideas of information theory and consider speech from the point of view of its 

information content (Shannon, 1968). Alternatively one may characterize speech as a 

signal which somehow carries the message information and look at properties of the 

acoustic speech waveform using parametric descriptions of the acoustic waveform 

(Rabiner & Schafer, 1978). In addition, one may adopt the approach of phoneticians 

and describe speech in terms of phonetic sound qualities which are related to the actions 

of the articulators in the vocal apparatus (Wells & Colson, 1971). 

2.1 Descriptions of speech 

2.2.1 Articulatory Levels of Description 

One also can describe speech at the articulatory level, in terms of the behaviour of the 

anatomy of the vocal tract (Wells & Colson, 1971). The vocal apparatus, a cross-section 

through which is given in figure 2.2, provides a means by which nerve impulses from 

the brain may give rise to the acoustic speech signal. The final speech pressure 

waveform that is radiated at the lips and nose will depend upon the nature of the 

excitation and also the position of the articulators. Because the vocal tract transfer 

function and the excitation are both a function of time, the spectrum of speech is not 

stationary. By controlling the action of both the articulators and the vocal folds 

simultaneously, the brain may thus generate a signal in which the underlying message 

has been suitably coded for acoustic transmission. 

The vocal apparatus is a complex sound generator. For voiced speech production, the 

larynx is the source of the sound and the vocal tract is a time-varying acoustic filter 

which modifies the laryngeal excitation depending on the position of the articulators. 

Voiced speech excitation is discussed in more detail in a later section. For voiceless 

excitation, the sound source is due to turbulent airflow at a point of construction in the 

vocal tract, and the location of this point is again dependent upon the position of the 



articulators. Frication occurs only when the flow of air through constrictions in the 

vocal tract exceeds a certain critical value. Above this value, determined by the 

Reynolds number for air, the flow of air becomes turbulent. This turbulence gives rise 

to an acoustic disturbance that is noise-like in character. That is, un-correlated and with 

a flat spectrum. 

The power needed to generate the sound largely comes from the breathing mechanism; 

the sources of air are often referred to as the air streams. The most common air stream 

due to exhaling from the lungs is known as pulmonic egressive. In addition there are 

oral and pharyngeal air-streams due to air movement caused by the action of the mouth 

and pharynx respectively. The respiratory system can be controlled by the brain so that 

breathing fits in to suit the speech. Mainly exhaled air is used for speaking, and 

expiration may last over 10 seconds in some cases. 

2.2.2 The vocal tract 

The vocal tract consists of two irregular tubes. There is 2 passage that connects the 

larynx to the pharynx, to the mouth and then to the outer air. In addition, when the 

soft-palate is lowered, there is another passage between the larynx to the nostrils to the 

outer air. The acoustic behaviour is the result of reflections and standing waves in these 

tubes and is dependent on the natural frequencies of vibration and damping within the 

system. 

The dimensions of the vocal tract determine its resonant, or fom~ant, frequencies. The 

relationship between these resonances is known as the formant structure. The vocal tract 

can be controlled by will to generate changes in this forniant structure that are 

perceptibly different to a listener by the action of different articulators. Formant 

structure is important because it provides one means to distinguish sounds. 

The articulators are the parts of the vocal tract that can be moved to alter the sounds 

that can be produced. The tongue can be moved up, down, backwards and forwards in 

order to change the effective length and cross-sectional area of the vocal tract. In  



addition, the opening at the lips can be altered, the soft-palate can be opened and closed, 

and the jaw can be raised and lowered. The vowel systems in languages exploit all of 

these methods to change the formant structure. 

The motion of the articulators is constrained by their anatomy and the muscles that 

move them. Consequently they can only move at a limited rate from one position to 

another. As a result of this the present location of the articulators will have some effect 

on their future position. These effects manifest themselves in the speech signal as 

assimilation effects. 

2.3 PHONETIC LEVELS OF DESCRIPTION 

A description of speech that is related to the articulatory descriptions is one based upon 

the phonetic qualities of speech (Wells & Colson, 1971; O'Connor, 1973; Ladeford, 

1975). The field of phonetics is the study and description of speech sounds. It is 

concerned with what sounds we produce and how we produce them. 

Phonetic descriptions are based on perceptible differences in the way the vocal tract of 

the speaker is used to produce speech sounds. Most languages, including English, can 

be described in terms of a set of distinctive sound units that are known as phonemes. 

A table of the phonemes of English, together with examples of them, is given in table 

A phonetician can write down a representation of speech sounds using a phonetic 

transcription, which consists of a set of symbols. At the segmental level these symbols 

indicate the place and manner of articulation as well as the presence or absence of 

voicing. The manner of articulation refers to the kind of articulation used, for example 

nasal, rolls, plosive, lateral, affricate. A description of the setting of the lips is also 

important and it is required to know their rounding, spreading and protrusion. 

Suprasegmental aspects of speech, such as the intonation of an utterance has a linguistic 

component that may be described in terms of a fall, rise, rise-fall, fall-rise, etc. 



2.3.1 Phonemes 

The important point about phonemes is that they are sound units that are contrastive 

with respect to one another and can be used to discriminate between words. A 

phonetician shows that two sounds (allophones) are phonemes by finding what is known 

as a minimal pair to demonstrate that a contrast exists between them. This is a pair of 

different words that are distinguished on the basis of the phoneme under investigation. 

The contrastiveness of a particular pair of sounds depends upon the given language and 

even the dialect. Consequently a given phonemic transcription system may not be suited 

for transcribing other languages. Phonemes can themselves be classified into vowels, 

diphthongs, semivowels and consonants. 

2.3.2 Allophones 

A phoneme has variants known as allophones. The allophones of a phoneme constitute 

a set of sounds that do not change the meaning of a word, are similar to each other and 

occur in phonetic contexts different from one another (Ladefoged, 1975). 

The allophones belonging to a given phoneme may either be arranged into 

complementary distribution or in free variation. If two allophones are in complementary 

distribution, this refers to the fact that the particular allophone used is dependent on the 

context (that is, the neighbouring phonemes). If two allophones are in free variation, 

the particular allophone used is freely selected and not dependent on context. Sounds 

that are in complementary distribution or free variation are only said to represent the 

same phoneme if they are phonetically similar. That is, they must have n~os t  of their 

phonetic features in common and they must sound similar to native speakers of the 

language. 

There are various effects that occur in continuous speech. Two of these are assimilation 

and elision. Assimilation is a phenomenon whereby a phoneme consonant changes so 

that is has, for example, the same place of articulation as the following consonant. This 

makes the production of the sounds easier, since it requires less articulator movement 



than would otherwise be needed. Another related phenomenon is elision, whereby a 

phoneme in an utterance is missed out, again to facilitate speech production by 

simplifying the required articulations. 

It is valuable to make some brief general statements concerning the acoustic properties 

of certain categories of speech sound, as an aid in understanding the problems involved 

in speech fundamental period estimation. 

2.3.3 Consonants 

Consonants constitute the sounds that are not vowels and are differentiated by place of 

articulation (bilabial, labiodental, alveolar, dental, velar, paleto-alveolar, post-alveolar) 

their manner (plosive, fricative, affricate, nasal, continuant) and whether or not they are 

voiced. The differentiation between vowels and consonants must be made in terms of 

the relationship of the sounds in a language system and cannot be done solely on the 

basis of acoustic characteristics. 

Plosives are transient non-continuant sounds and are characterised by three distinct 

phases. Firstly there is an approach phase, during which the appropriate articulators 

move towards their target positions. Secondly there is a hold phase, where the vocal 

tract is blocked off by closure of the articulators. Finally there is the release phase, 

when the articulators separate again. After the plosive release there may be a voiceless 

excitation due to the release of breath, and this is known as aspiration. Therefore 

plosives give rise to a brief transient burst of noise, as released air flows through the 

constriction. Thus a plosive is characterised by a short silence typically followed by a 

short noise burst when the stop is released. The length of the silence depends on the 

tempo of the utterance. It is shorter in voiced sounds than unvoiced sounds. However, 

the main difference between voiced and unvoiced plosives is that in the former the vocal 

folds vibrate during the closure as the pressure builds up, whereas in the latter case they 

do not. Often a small amount of low frequency energy can still radiate through the 

walls of the throat during the closure in a voiced plosive. 



In an affricate, there is a plosive followed by a homorganic fricative. The latter is a 

fricative with friction occurring at the point of release of the plosive. 

Nasal consonants involve the lowering of the soft-palate and a complete closure in the 

oral cavity so that air can only escape via the naso-pharynx. When the nasal passage 

is open, the closed oral cavity serves as a resonant cavity that traps acoustic energy at 

its natural resonant frequencies. The effect of this is to add an anti-resonance to the 

transfer function of the vocal tract, and results in the removal of energy from the 

radiated speech at the frequency of this anti-resonance (Hanagan, 1972). Since the oral 

opening of the vocal tract is closed off during a nasal, nasals consequently are of lower 

intensity than oral consonants. Different nasal consonants are differentiated by the place 

at which the obstruction of the oral tract takes place. 

Fricatives are consonants in which there is turbulent air flow at a narrow region in  the 

vocal tract, giving rise to noise-like acoustic excitation at the point of the narrowing. 

The location of the point of the narrowing determines which fricative is produced. This 

noise source is filtered by the action of the resonance of the oral cavity forward of the 

constriction and the anti-resonance of the oral cavity behind the constriction. Due to 

their noise-like excitation, fricatives are characterized as having non-periodic waveforms 

with significant energy at high frequencies (that is above a few kHz, which is not the 

case for vowels). In voiced fricatives, the point of constriction in the vocal tract is the 

same as for their unvoiced phoneme counterparts. However, there is also voiced 

excitation due to vocal fold vibration. 

2.3.4 Vowels 

Vowels are voiced sounds that are characterized by a lack of constriction of the vocal 

tract (it should be noted that whispered speech can be still treated as voiced 

phonemically, even though there is no vocal fold vibration but turbulence at the glottis 

instead). It is essentially the cross-sectional area of the vocal tract that determines its 

resonant frequencies and consequently the vowel quality that is produced. The 

dependence of the cross-sectional area of the vocal tract on the location in the vocal 



tract is known as the area-function of the vocal tract. For vowel sounds there are no 

obstructions of the vocal tract, although the area-function depends mainly on the position 

and attitude of the tongue, and also to a lesser extent on the position of the jaw, soft- 

palate and the rounding of the lips. The vertical position of the tongue is often 

described in terms of height of the tongue, where a CLOSE tongue position represents 

the highest the tongue can be raised, whereas a OPEN tongue position is the furthest 

down it can be placed. The horizontal position of the tongue is described as FRONT, 

CENTRE or BACK, depending upon whether the tongue is forward in the mouth, 

midway or back in the mouth. 

From the production point of view, vowels are more difficult to describe than 

consonants because the shape of the vocal tract cannot be as easily identified. 

The auditory quality of a vowel is usually described by ear with respect to a reference 

set of vowels, known as the cardinal vowels. The quality of these vowels is independent 

of language and the cardinal vowel system provides a classification scheme on the basis 

of perceptible difference between a given vowel and the reference set. The cardinal 

vowels consist of a set of vowels that provide a coverage of all the possible vowels that 

can be produced. Thus they constitute a sampling of vowel space along the dimensions 

of open to close and front to back. In addition to tongue position, vowels may have 

different amounts of lip rounding. 

In the case of diphthongs, the vocal tract area function changes smoothly between those 

of the appropriate two vowels. In all other respects, a diphthong has the features of an 

ordinary vowel. 

Semivowels are a group of phonemes that are difficult to characterize. Their acoustic 

properties are similar to vowels and they are generally characterized by a gliding 

transition of their area-function between those of the adjacent phonemes. Consequently 

they are strongly influenced by their context. The distinction between semivowels and 

vowels is made linguistically with reference to their behaviour in a syllable, and not 

only on acoustic grounds. 



2.3.5 Intonation 

The most important function of speech fundamental frequency is as the carrier of 

intonation. Intonation is the temporal pattern of perceived pitch and it has two different 

purposes. It can convey grammatical information that forms part of a language system. 

As such, it is mainly the relative change in intonation that is important. For example, 

it can be used as a means of encoding stress into an utterance, which provides a means 

of emphasizing certain words. In addition, it can also convey information relating to the 

emotional state of the speaker. The fundamental frequency contour is important for the 

intelligibility and naturalness of the utterance (O'Connor & Arnold, 1961). In tone 

languages (such as Chinese) fundamental frequency changes produce lexical meaning 

contrasts. 

2.5 DIGITAL REPRESENTATIONS OF THE SPEECH WAVEFORM 

Speech propagates through the air as an acoustic pressure waveform. For the purposes 

of computer speech analysis, i t  is necessary first to converi it in a different form and this 

usually takes the shape of amplitude measurements of the speech pressure at regular 

time intervals (Rabiner & Schafer, 1978). The conversion of the acoustic speech 

waveform into a digitized speech pressure waveform involves firstly converting acoustic 

pressure variations in the air to electrical fluctuations using a pressure microphone (It 

is also possible to use a velocity microphone which responds to the velocity of the air 

rather than the pressure, but this type of microphone is less common). The output from 

the microphone is then low-pass filtered and then sampled at a uniform rate by means 

of an analogue-to-digital (AID) converter, which converts the amplitude measurements 

to a number. It is necessary to ensure that the bandwidth of the signal to be sampled 

is less than half the sampling frequency, otherwise aliasing will occur and this is 

prevented by the low-pass filter (Nyquist, 1928). If the sampled data is aliased, then it  

will not be possible to reconstruct the original waveform from it, because it  no longer 

uniquely represents the original waveform. It is also important that the resolution of the 

AID converter is sufficient for the application, because the process of quantization of 

the continuously valued input signal into a set of discrete levels introduces uncertainty 



in the signal representation that can be considered as additive noise (Rabiner & Schafer, 

1978). 

A description of speech in terms of the sampled representation of the speech pressure 

waveform is a very general representation that is only concerned with preserving the 

wave-shape of the signal by the appropriate choice of sampling frequency and levels of 

quantization. Such a description involves no other a priori knowledge particular to the 

characteristics of speech. 

2.5.1 Parametric models 

Parametric models of speech are more abstract that this and are concerned with 

representing the signal in terms of the output from a production model (Fant, 1970; 

Flanagan, 1972). In a simplest case of such a model, speech production is represented 

as an excitation source driving a time-varying linear filter that represents the acoustic 

effects of the excitation spectrum, vocal tract, and radiation effects at the lips. For 

voiced speech, the excitation source in this model must mimic the excitation due to the 

repeated opening and closure of the vocal folds. For voiceless excitation, it must mimic 

the noise-like excitation due to turbulent airflow in the vocal tract. In more 

sophisticated models, the effects of the excitation spectrum, vocal tract and lip radiation 

can be represented separately. In both cases, the time-varying linear filter must account 

for the resonances of the vocal tract, which are known as the formants. For simple 

purposes the vocal tract can be approximately modelled as two tubes. This production 

model is useful for the generation of synthetic speech as well as a model for speech 

analysis. For synthesis of voiced speech it is the first three resonances that are most 

important (Holmes, 1988). 

2.5.2 Acoustic variability of speech 

Different speakers will have different larynx sizes, vocal tract sizes, phonetic and 

linguistic upbringing, speech habits, emotional states and vocal fold characteristics. All 

these factors affect the speech produced in different ways. Consequently there will be 



a large difference in the acoustic realizations of utterances for different speakers (cross- 

speaker variabilities). In addition, variabilities also arise because of differences that 

occur in a given speaker as a function of time (occasion-to-occasion variability). An 

example of speech variability in short-term acoustic representations is demonstrated by 

the fact that the fwst two formants for different speakers for the same vowels overlap, 

as shown in figure 2.3 (Peterson & Barney, 1952). 

2.2 VOICED EXCITATION 

There now follows a more in-depth description of voiced speech excitation, because this 

area is of particular interest to speech fundamental period estimation. 

The basic acoustic function of the larynx is to act as the sound source during voiced 

speech production. A cross-section through the larynx is shown in figure 2.4, and front 

and back views are shown in figure 2.5. Its action gives rise to a glottal wave which 

acts as a carrier for the speech message imparted by the effects of the vocal tract. In 

addition, the characteristics of the voice source are important because it contributes to 

the means by which the physical, psychological and social characteristics of the speaker 

can be conveyed. 

2.2.1 Vocal Fold Vibration 

Voiced excitation occurs when air flows between the vocal folds causing them to vibrate 

and the main peak of excitation results from their closure. The result of vocal fold 

vibration is thus a modulation of the air flow that passes into the vocal tract and 

constitutes a quasi-periodic acoustic excitation. 

The vibration of the vocal folds that characterises voiced speech is complex. The 

vibrating system is three dimensional, and consequently its motion is more complicated 

than simple harmonic motion. It is a vibrating system that has different modes of 

oscillation. In normal voice, the vocal folds constitute a thick shelf across the larynx 

(figure 2.4) all of which moves periodically together and then apart again. In other 



modes of vibration, the vocal folds can be thinned out at the edges. This results in a 

lighter vibrating section and consequently a higher frequency of vibration. 

2.2.2 Mechanism of vocal fold vibration 

The mechanisms involved in vocal fold vibration can be understood by considering the 

following sequence of events, which follows what is known as the myo-elastic theory 

of phonation (Van den Berg, 1957). Air from the lungs during exhalation is the main 

airstream used in phonation (known as the pulmonic airstream). The laryngeal muscles 

can cause the vocal folds to close, thus blocking the air passage. If this happens during 

exhalation there will be a build up of air pressure below the vocal folds, which will 

eventually force them apart. After this happens, there are two mechanisms involved in 

bringing them back together again. Firstly the muscle fibers and ligaments in the vocal 

folds are elastic, and after the vocal folds have been forced out of position, they spring 

back to their resting position. Secondly, as air flows through the constriction in the 

vocal folds, its velocity increases and consequently its pressure decreases, due to the 

Bernoulli effect. When the air pressure between the vocal folds drops, the external 

pressure tends to force the vocal folds together. There is positive feedback in this 

mechanism, because the closer the vocal folds get, the faster the air flow and the greater 

the pressure drop will be. Therefore, the vocal folds are accelerated together, resulting 

in a strong impulse excitation of the vocal tract as they snap shut. After this, the 

pressure then rapidly returns to normal atmospheric, and because of the constriction the 

sub-glottal pressure starts to rise again. Thus the cycle repeats itself. The overall effect 

is that successive puffs of air enter the vocal tract just above the larynx. 

The frequency of vibration of the vocal folds depends upon the sub-glottal pressure and 

their resistance to movement. The resistance to movement of the vocal folds depends 

on their mass, length and tension. The effective length of the vocal folds can be 

adjusted by means of the thyro-arytenoid muscles and crico-thyroid muscles (see figure 

2.5). The latter changes the angle between the thyroid and cricoid cartilages thus 

stretching and lengthening the vocal folds. Since all of the parameters affecting vocal 

fold vibration rate are controlled by the action of muscles in the larynx and air pressure 



and flow, the speaker is able to alter the vibration rate at will. 

2.2.3 Laryngographic descriptions of Voiced speech 

A device of particular value in the analysis of voiced speech excitation is the 

laryngograph (Fourcin & Abberton, 197 1). A description of the laryngograph and its 

relationship to vocal fold vibration is of particular importance here because it forms a 

fundamental part in the training and testing of the fundamental period estimation 

algorithm which is the subject of this thesis. 

A laryngograph operates by measuring the conductance across the larynx at the level of 

the vocal folds. This is achieved by placing two electrodes across the larynx with a 

small alternating voltage at several MHz across them. Movement of the vocal folds 

causes a change in the conductance which is subsequently detected. 

The output waveform from the laryngograph thus gives a measure of vocal fold activity 

and is temporally much simpler than the corresponding speech pressure waveform. The 

point of closure of the vocal folds, which gives rise to the main peak in excitation, can 

be easily determined from the laryngograph waveform. The manifestation of the closure 

of the vocal folds in the laryngograph output signal is well agreed upon (Fourcin, 1974). 

The point of closure is usually taken as the point of maximum gradient in the closing 

phase of the laryngograph signal. Agreement on the opening point is, however, less 

well accepted. This is because as the vocal folds open, they "peel apart" from below 

and the corresponding effect in the laryngograph waveform is difficult to define as a 

specific distinct event. Figure 2.6 shows the relationship between vocal fold vibration 

and the laryngograph waveform for normal modes of laryngeal activity. 

2.2.4 Laryngograph signals for different voice qualities 

There now follows a description of the characteristics of the laryngograph waveform for 

different voice qualities. According to Hollein (1972) there are three major vocal 

registers; modal (normal), falsetto, and vocal fry (creak). 



2.2.5 Normal voice 

Normal voice is characterised by regular vibration of the vocal folds, without any 

frication. It is used over most of the speaker's frequency range. This is typically about 

90-200Hz for male and 150-3 10Hz for women. 

With normal voice the whole body of the vocal folds vibrates, giving characteristically 

relatively long vocal fold closure times. The brief velocity peak of the vocal folds that 

occurs as they snap shut gives an excitation with significant high frequency components, 

which results in a well defined set of formant frequencies. The speech pressure 

waveform for normal voice and the corresponding output from a laryngograph are shown 

in figure 2.7. 

2.2.6 Breathy voice 

Breathy voice may be characterised by incomplete closure of the vocal folds, and by 

greater pulmonic airflow than in normal speech. The vocal folds vibrate but do not 

necessarily make contact, although lack of contact only happens during very breathy 

voice. The closure points as observed by means of a laryngograph are smoother, 

because full closure is not made. Also, the open phase is much longer than normal. 

This results in greater sub-glottal damping of the vocal tract, and the vocal tract 

resonances are therefore less well defined than with normal speech. There is also noise 

generated by turbulence at the glottis, which shows up in the speech pressure waveform. 

A more extreme case of this aspiration occurs in the case of whispered speech, when 

there is strong air turbulence at the glottis and the vocal folds do not meet. The speech 

pressure waveform for breathy voice and its corresponding output from the laryngograph 

is shown in figure 2.8. 

2.2.7 Creaky voice 

A special case of vocal fold vibration is that of creaky voice. It generally occurs at the 

end of utterances with falling intonation and it is characterised by laryngeal vibrations 



of unusually large duration. Sometimes these are alternated with shorter duration cycles, 

giving a short cycle followed by a long cycle. The irregularity is perceived as a creaky 

voice quality. The speech pressure waveform shows clear evidence of vocal tract 

excitation at each closure, and since the cycle time is large, each excitation of the vocal 

tract has time to die down a long way before the next excitation occurs, and 

consequently the excitation points are well defined. There is a tendency for speakers 

to use creaky voice quality if they want to go down to a low pitch that is below the 

bottom end of their normal frequency range. The speech pressure waveform for one 

example of creaky voice and the corresponding output from the laryngograph is shown 

in figure 2.9. 

2.2.8 Falsetto voice 

Falsetto voice occurs when only the top edge of the vocal folds vibrates which results 

in damping of the vocal tract by the sub-glottal system much sooner after the excitation 

point than in the case of normal voice. This results in a much temporally simpler 

speech pressure waveform than with normal voice quality. There is a tendency for the 

speaker to make use of a falsetto voice to reach fundamental frequencies that are above 

their normal range. The speech pressure waveform for an example of falsetto voice and 

its corresponding output from the laryngograph is shown in figure 2.10. 

2.2.9 Mixed excitation 

In some cases both fricative excitation and voicing occur at the same time. This is 

known as mixed excitation. Because of the pulsatile nature of the air flow via the vocal 

tract in this condition, the frication occurs in bursts synchronously with the glottal air 

flow pulses. Figure 2.1 1 gives an example of mixed excitation in a voiced fricative. 

2.2.10 Problems in using the laryngograph 

There are several limitation in using electro-glottography in general to estimate the 

operation of the vocal folds (Colton & Conture, 1990). These range from problems in 



obtaining good quality laryngograph signals with some speakers to cases where there are 

discrepancies between the speech and laryngograph signals. 

Only a small fraction of the current from the laryngograph electrodes passes through the 

vocal folds. As a consequence of this, the laryngograph waveform (known as Lx) is 

strongly affected by gross larynx movements, blood flow through the neck and the 

contraction of the extrinsic laryngeal muscles. Figure 2.12 shows a large excursion in 

the laryngograph waveform that often occurs as a speaker prepare to phonate that has 

no corresponding acoustic excitation. By high pass filtering this composite signal within 

the laryngograph, the faster fluctuation due to vocal fold vibration can be emphasized 

(Colton & Conture, 1990). 

2.2.11 Discrepancies between the speech signal and the laryngograph signal 

There are circumstances where the laryngograph does not always give a strong 

indication of voicing when observation of the speech pressure waveform indicated that 

voicing is indeed present (Howard & Lindsay, 1988). This happens when the vocal 

folds vibrate without making firm contact and are "flapping about in the breeze" 

(Childers & Larar, 1984). This mainly occurs towards the end of unstressed voiced 

segments, when the vocal folds are still vibrating but no firm closure is made. 

Consequently there is little change in the impedance across the larynx and therefore little 

fluctuation on the laryngograph waveform. This phenomenon occurs more frequently 

in the case of female speakers than for male speakers. Figure 2.13 shows the case when 

there is evidence of vocal excitation in the speech pressure waveform, but little evidence 

for it in the laryngograph waveform. Conversely, there are occasions when there is 

laryngograph activity, but no speech pressure waveform, such as during a hold in a 

plosive. In this case the acoustic excitation occurring at the vocal folds is attenuated by 

the closure, and consequently there is little or no speech output. Figure 2.14 illustrates 

this phenomenon. 
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Figure 2.1 The speech chain. 

This shows the stages in the generation of a message within the brain of a speaker to 

its transmission using sound, and then its reception in the brain of a listener (visual 

information, such as speaker gestures and lip moments, can also contribute to the 

communication process, but is not shown here). The message is shown to start as 

activity corresponding to a linguistic level within higher centres in the speaker's brain. 

Suitable nerve signals are then generated to control the vocal apparatus. This results in 

the broadcast of an acoustic speech wave which travels to the listener. The sound is 

then analysed by the ear (more particularly the cochlea) and nerve signals then convey 

the information to higher centres in the listener's brain, where their linguistic 

significance is interpreted. 

(Taken from Denes & Pinson, 1973). 



Figure 2.2 Cross-section through the human vocal tract. 

The position of the articulators is shown. 

(Taken from Wells & Colson, 1971). 
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Figure 2.3 Variability of formant frequencies across speakers. 

Figure shows the overlap between the first two formant frequencies of different vowels 

for different speakers. 

(Taken from Peterson & Barney, 1952). 



Figure 2.4 Cross-section through the larynx. 

The vocal folds can be clearly seen. 

(Taken from Borden & Harris, 1980). 



Figure 2.5 Front and rear views of the larynx. 

(Taken from Borden & Harris, 1980). 



Figure 2.6 The relationship between vocal fold motion and the laryngograph waveform, 

during normal speech. 

Six key stages in a complete period are shown. Diagrams (a) shows the view of the 

vocal folds from above. Diagrams (b) show a cross-section of the vocal folds. The 

corresponding effect in the laryngograph waveform is shown in diagrams (c). Diagram 

(d) shows the corresponding glottal air flow. The marked points are as follows: 

(1) is the point of closure at a single point. 

(2) is the instant when complete closure has been made over the length of the glottis, 

but not over the vertical plane. 

(3) is the point of maximum closure. 

(4) is the point at which opening begins. 

(5) is the instant at which the entire length of the glottis is open. 

(Taken from Hess, 1983; Base on Lecluse, 1977). 
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Figure 2.7 Speech pressure waveform and laryngograph waveform for an example of 

normal speech. 

The laryngograph waveshape is similar to that shown in figure 2.6, except high-pass 

filtering present in the laryngograph has resulted in sloping of the horizontal sections of 

the waveform. 

The utterance is the vowel /id spoken by a male. 
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Figure 2.8 Speech pressure waveform and laryngograph waveform for an example of 

breathy voice quality. 

It can be seen that the vocal folds maintain firm closure for a smaller proportion of the 

period than in the case of normal voice quality. Consequently the laryngograph 

waveform is positive for a smaller portion of the overall cycle. The utterance is the 

vowel /i/ spoken by a male. 
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Figure 2.9 Speech pressure waveform and laryngograph waveform for an example of 

creaky voice quality. 

In this case, the vocal fold closures occur irregularly, sometimes with a long closure 

followed by a shorter closure. The utterance is the vowel /i/ spoken by a male. 
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Figure 2.10 Speech pressure waveform and laryngograph waveform for an example of 

falsetto voice quality. 

The utterance is the vowel /V spoken by a male. 
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Figure 2.11 Speech pressure waveform and laryngograph waveform for a voiced 

fricative. 

There is fricative excitation in addition to the quasi-period excitation due to vocal fold 

vibration. It can be seen that the frication occurs synchronously with the vocal fold 

vibrations. The utterance is the voiced fricative /z/ spoken by a male. 
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Figure 2.12 Unwanted excursion in laryngograph output waveform. 

It can be seen that prior to phonation there are spurious excursions of the laryngograph 

waveform that have no acoustic significance. The utterance is the onset of the vowel 

/id spoken by a male. 
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Figure 2.13 Evidence of vocal fold vibration in the speech pressure waveform, but little 

in the laryngograph signal. 

This situation arises when fm vocal fold contact is not made, but the vocal folds are 

still vibrating. The section shown is the end of the utterance "yes" spoken using a 

breathy voice quality by a male. 
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Figure 2.14 Evidence of vocal fold vibration in the laryngograph waveform, but only 

a small amount in the acoustic speech pressure waveform. 

This occurs when there is a block in the vocal tract, such as in the case of the hold stage 

in a plosive, but there in still sufficient air flow through the larynx to maintain vocal 

fold vibration (this air flow results in an increase of air pressure behind the constriction). 

The section shown is the lead up to the plosive h/, spoken by a male. 



CHAPTER 3: ISSUES IN SPEECH FUNDAMENTAL FREQUENCY AND PERIOD 

ESTIMATION 

3.1 INTRODUCTION 

This chapter explores some of the issues and problems involved in the estimation of 

speech fundamental frequency. Firstly there is a discussion of what is meant by the 

terms fundamental frequency, fundamental period and pitch. Some aspects of human 

pitch perception and their relationships to the requirements of algorithms that estimate 

speech fundamental frequency are then discussed. Finally, there is a brief introduction 

to the basic approaches to speech fundamental frequency estimation by machine. 

3.1.1 Fundamental frequency and pitch 

Before entering into an in depth discussion of the problems involved in estimating 

speech fundamental frequency, it is necessary to precisely define the problem. It is also 

enlightening to investigate the relationship between the parameters fundamental 

frequency, fundamental period and pitch. 

The automatic estimation of fundamental frequency of voiced speech excitation is often 

misleadingly referred to as pitch analysis. Pitch properly refers to a percept rather than 

a parameter of speech production (McKinney, 1965), although the term pitch is often 

used in current technical literature to express both fundamental frequency and 

fundamental period. Pitch is a subjective phenomenon whereas fundamental frequency 

is open to physical measurements. There is a relationship between pitch and frequency, 

but it is rather complex, although pitch is correlated with the physical feature of 

fundamental frequency. Thus, when one is considering speech at the acoustic level, it 

is preferable to use the concept of fundamental frequency. It is also useful to 

distinguish between fundamental period estimation, implying a period-by-period 

estimation process, and fundamental frequency estimation, which result from short-term 

analyses. 



3.1.2 Approaches to speech analysis 

Zwicker, Hess & Terhardt (1967) looked at the problem of speech analysis from three 

different points of view. All of these are related for stationary periodic signals, but not 

for real speech. 

l ]  Speech can be considered from the production viewpoint, and it can be analysed 

using knowledge about the way in which it was generated. The parameters that are 

estimated using such an approach are related to the control parameters of the speech 

production process. At the lowest level of speech production, one can define the larynx 

fundamental periods as the time between successive vocal folds closures. Similarly the 

larynx fundamental frequency can be defined as rate of the vocal fold vibration. 

21 From a perceptual viewpoint, speech may be analysed in a fashion that is similar to 

the processing that is believed to occur in the human auditory system. In the case of 

a human listener or by using a model of human pitch perception, the perceived pitch of 

a speech stimulus can be defined as the frequency of a pure tone that evokes the same 

perceived pitch. 

31 From the signal processing viewpoint, speech analysis does not necessarily take 

account of speech production or speech perception, but seeks to describe the signal in 

some mathematically optimal way. If the speech production process is not taken into 

account, the fundamental frequency and the fundamental period of the speech can be 

defined in terms of the minimum repetitive period of the signal, or corresponding to the 

common sub-multiple of a set of harmonics. This task can be carried out using digital 

signal processing techniques, such as auto-correlation. 

3.1.3 Simplified model of speech excitation 

A simplified model of the excitation of voiced speech sounds was described by 

McKinney (McKinney, 1965). In this model, a volume velocity glottal excitation 

function ug(t) excites a passive linear system. This is illustrated in figure 3.1. The 



supra-glottal system transfer function represents the characteristics of the vocal tract and 

radiation at the lips. The glottal wave is often modelled as a pulse train. However, in 

this model ug(t) will be considered to be due to the sum of a pulse train pg(t) and a 

slowly varying function vg(t). The latter term is required because the volume velocity 

at the glottis does not always go to zero during each cycle of vibration. The function 

pg(t) will be called the excitation pulse function. Each individual excitation pulse has 

an associated time of occurrence, its excitation pulse time. In order to make this 

coincide with the principal excitation of the formant resonance in the vocal tract, the 

excitation time is defined to occur at the time when the excitation pulse function reaches 

a zero value at the end of each glottal cycle (see figure 3.1). This time is also the 

instant of glottal closure, and corresponds to the maximum positive gradient in a 

laryngograph waveform. 

3.2 FUNDAMENTAL PERIOD, FUNDAMENTAL FREQUENCY AND PITCH 

3.2.1 Definition of fundamental period 

Hess (1983) states that there are three possible ways to define To, the speech 

fundamental period. 

l ]  There is a long term definition, whereby To is the period duration of a signal that is 

strictly periodic. 

21 There is a short-term definition, in which case To is due to the average elapsed time 

between successive excitations, somehow averaged over a specified short-term window. 

31 There is a period-by-period definition, where To is the elapsed time between two 

successive period markers. 

Definition l ]  cannot be applied to speech, because it is a quasi-periodic signal and this 

definition only applies for stationary signals. Definition 21 implies a short-term analysis 

of the speech signal, whereas 31 can be achieved by means of tirne-domain analysis of 



the speech signal. In each case, the associated fundamental frequency F, to a 

fundamental period To is defined as 

3.2.2 Period-by-period or average measurements 

Hess and Indefry (1987) discuss several basic approaches to estimating the fundamental 

period and fundamental frequency values of speech. Their analysis is as follows: 

Method 1: Ideally an algorithm is required that can locate individual laryngeal cycles 

as accurately as possible. Such an algorithm will then be able to measure the natural 

fluctuations in vocal fold vibration. By detecting the "event" points of glottal closure 

it is possible to generate cycle-by-cycle fundamental period estimates, that are the times 

between successive points. In this case the period estimates are in correct phase; that 

is to say, a period is defined with its start located at one excitation point an its end at 

the next excitation time. Most algorithms operating on the acoustic speech waveform 

are unable to perform this function. However, laryngograph-based analyses can quite 

easily follow this definition. 

Method 2: The next best approach, in terms of retaining information concerning the 

excitation, is to use an arbitrary repetitive point in the speech waveform and calculate 

the successive period spacing between these points. Most time-domain fundamental 

period estimation algorithms operate in this manner. This again leads to period-by- 

period measurements. In this case, the repetitive point may not correspond to the point 

of excitation in the speech waveform, and its location relative to the excitation point 

may change depending upon the wave-shape. Consequently, the period estimates may 

not be in-phase with the excitation points, as there were in the previous case. 

Method 3: Another method involves determination of the average length of several 

successive periods. This operation is implicitly carried out by algorithms that use short- 

term analysis, such as auto-correlation. The inherent smoothing with this approach 



results in the loss of fine perturbations in the fundamental period values that occur in 

speech. 

Method 4: Finally fundamental frequency can be determined from a short-term 

frequency representation of the signal. Again, the window of analysis is required to 

contain at least one period, which gives a minimum window of around 20ms. The 

detailed nature of the method varies from technique to technique. This approach also 

results in smoothed frequency estimates. 

3.2.3 The perception of spectral and virtual pitch 

There is now a brief discussion of the human perception of pitch. This section is 

included because it is the limitations of the human auditory system and the perception 

of pitch that provide the ultimate limit on the performance necessary for a speech 

fundamental period (or frequency) estimation algorithm for general use. 

Pitch perception has been investigated by many researchers for a long time. Many of 

the earlier theories of pitch perception relate to stationary complex sounds. At present, 

little is known about the perception of non-stationary sounds with changing fundamental 

frequency of excitation. 

In early research, it was believed that the fundamental harmonic played the dominant 

part in the perception of pitch. However, Schouten (1938) showed that the phenomenon 

of pitch perception is not only evoked by the fundamental harmonic (at least not over 

the range of normal speech), an that the pitch of a harmonic complex remains the same 

when the fundamental harmonic is removed. 

In an attempt to explain this phenomenon, de Boer (1956) proposed that this is not due 

to non-linear reconstruction of the fundamental harmonic within the ear, and that the 

perception of pitch is due to a pattern matching process. Subsequent work developed 

this idea further. In these theories, each harmonic evokes a spectral pitch corresponding 

to its fundamental frequency. All the spectral pitches then contribute to an overall pitch. 



This is knows as the residual peridcity (Goldstein, 1973) or the virtual pitch (Terhardt, 

1974). 

3.2.4 Some important modeis of pitch perception 

Three models that represent different approaches to pitch perception are now described. 

All models are characterized by a peripheral analysis that is characterized by a frequency 

analysis and a stage in which low pitch is estimated. However, the final pattern 

recognition stage is different in each model. 

l] Wightman's pattern transformation model (1973). 

There are three stages of processing in this model. Stage 1 is a limited frequency 

resolution power spectrum analyzer which is an approximation to frequency analysis 

performed by the peripheral auditory system. Stage 2 consists of a Fourier transform, 

which is assumed to be realised by means of a specially wired network of neural 

elements. Stage 3 is then a pitch estimator that operates by finding the positions of 

maximal activity in the output patterns from stage 2. 

21 Goldstein's optimal processor model (1973). 

In this model the processor is believed to make an optimal estimate of fundamental 

frequency on the basis of the noisy representations of the harmonics that are resolved. 

Under the assumption that the input stimulus is periodic and that adjacent harmonics are 

present, the model calculates the harmonic numbers and makes use of this information 

to estimate the fundamental frequency. 

31 Terhardt's learning matrix model (1974). 

This model is centres on a learning matrix that uses spectral-pitch and lowest spectral- 

pitch cues as its input (the term spectral-pitch refers to an estimate determined from 

peak in the short-term spectrum of the signal). The model operates in two phases: The 

first is a learning phase, which is assumed to be part of the childhood learning process 

in which a subject acquires the ability to recognize speech. Jn this phase, the 

correlations between the two input signals make their impression on the learning matrix. 



The second is the recognition phase, in which the learned system generates its pitch 

estimates. During this phase of operation, the previously impressed traces in the 

learning mamx can be evoked by similar input stimuli to provide a virtual low pitch. 

Any given stimulus generates an number of such virtual pitch cues and the strongest 

determined the final pitch estimate. 

A single sinusoidal tone evokes a spectral pitch. A signal such as speech is not a single 

tone, but rather a complex tone. If we assume for the moment that it will have many 

harmonics, each of which has it associated spectral pitch. The individual spectral 

pitches due to the harmonics are then centrally combined to give rise to the sensation 

of virtual pitch. This is the perceptual equivalent of fundamental frequency. 

A definition of spectral and virtual pitch based on a quote by Terhardt (1972a) is as 

follows: 

A single sinusoidal tone evokes a sensation known as the spectral pitch, which is related 

to the greatest place of excitation in the organ of Corti. The spectral pitches due to the 

partials associated with a complex sound can be individually perceived by a subject, 

provided that he makes a conscious effort to do so, unless the difference in frequency 

between the partials does not fall below a certain level. In addition to the spectral 

pitches, a stimulus generally evokes a dominant global pitch. In the case of harmonic 

sounds, this corresponds to the fundamental frequency. This due to a completely 

different phenomenon to that which evokes spectral pitch, and is known as the virtual 

pitch. 

3.2.5 The pitch of speech 

For most purposes, it can be assumed that the pitch and fundamental frequency of 

speech sounds correspond to each other. However, this is only true if fundamental 

frequency is defined as the reciprocal of fundamental period. This definition of 

fundamental frequency only corresponds to the largest common divisor of the partials 

in the case of strictly periodic signals. The definition of pitch by Terhardt (1979b) 

provides a good way to combine the temporal properties of the stimulus with its 



perceived pitch. He states that "The extraction of fundamental frequency is in  some 

respect equivalent to extraction of virtual pitch. In a strict sense, however, the 

frequency which corresponds to virtual pitch, and the fundamental frequency defined as 

the largest common divisor of the partials) are in general not identical. ... Hence in the 

analysis of auditory signals such as speech and music actually the extraction of 

fundamental frequency is not the real aim but rather extraction of the frequency which 

corresponds to the virtual pitch". 

3.2.6 Difference limens for changes in frequency 

The smallest detectable change in the frequency of a stimulus is known as the frequency 

different limen (DL) for frequency change. For synthetic speech stimuli the fundamental 

frequency DL has a value of about 0.3% to 0.5% of the fundamental frequency for the 

fundamental frequency range of male voice; that is over about 40Hz- 150Hz (Flanagan 

& Saslow, 1958). This is less than the difference limen for a pure tone within the same 

frequency range, which correspond to about 3Hz (Zwicker & Feldkeller, 1967). 

Even if changes in fundamental frequency are audible, there are not necessarily 

linguistically significant. The DL for linguistic significance is an order of magnitude 

larger than the DL for audibility (McKinney, 1965). This is not that surprising if one 

considers the fact that if the change is important, then it makes sense that is should be 

easy for the auditory system to detect. 

3.2.7 The precision of speech production 

Hess (1983) states that unless the output from a speech fundamental frequency 

estimation algorithm is to be used in synthesis applications (in which case the result is 

presented to the ear), or for scientific investigations into vocal fold vibration, there is 

no need to estimate speech fundamental frequency to a higher accuracy than it  can be 

produced by the vocal apparatus. Various researchers have carried out measurements 

of the cycle-by-cycle changes in location of the glottal pulses. Gill (1962) found that 

there are more variations in wave-shape than in length of the glottal excitation. 



Lieberman (1963) found that for successive periods, there was a relative difference of 

more than 1% for 30% of all periods and there was a difference of more than 3% for 

10% of the periods. Similar results were found by Hollein et al. (1973) and Horii 

(1979). Horii found that the mean value of the jitter (the absolute difference in time) 

between two successive glottal pulses had a value of 51 microseconds at 98Hz and 24 

microseconds at 298 Hz. In addition, for 10% of the periods in the data used, the jitter 

exceeded 100 microseconds. 

These perturbations in the excitation are large compared to the frequency DLs for 

steady-state stimuli, and are audible to a listener. They cannot be individually 

distinguished, but contribute to the sensation of naturalness (Schroeder & David, 1960). 

Their effect is quite different from that of quantization noise, as has been observed in 

the context of speech synthesis (Holmes, 1976). 

3.3 PROBLEMS IN SPEECH FUNDAMENTAL PERIOD AND FREQUENCY 

ESTIMATION 

3.3.1 Basic difficulties 

The determination of speech fundamental frequency is a difficult problem for many 

reasons. Speech is a non-stationary signal. That is to say, its characteristics change 

greatly as a function of time. One reason for this is that the shape of the vocal tract can 

change rapidly even within the space of a single fundamental period. In addition, the 

vocal tract can give rise to a wide variety of speech sounds, with a multitude of different 

temporal structures. The glottal excitation of the vocal tract is often only quasi-periodic. 

This is particularly true in the case of creaky voice. In addition there are acoustic 

interactions between the excitation from the vocal folds and the vocal tract. 

3.3.2 Requirements for fundamental frequency estimation algorithms 

There have been many suggestions as to how the ideal fundamental frequency algorithm 

should perform (Rabiner et al., 1976). It must be free from gross errors, which occur 



when the frequency or period estimates deviate substantially from their true values. It 

must be able to retain the irregularity that exists in the vocal fold vibration. The 

fundamental period or fundamental frequency values should be as accurate as possible. 

The algorithm must be able to respond rapidly enough to changes in the excitation 

period. There should be no voicing determination errors. The measurements should be 

robust over different speakers, noise and environmental conditions. The algorithm 

should ideally require as little computation as possible, because this makes it easier (and 

possibly cheaper) to implement in real-time and for non-real time applications it will 

need less computer time to run (although this is becoming less important as time goes 

on, because of improvements in computer technology). 

The requirements for a fundamental frequency or period estimation algorithm are all 

dictated by characteristics of the speech production, speech perception, and the particular 

application for which the algorithm is intended. The human ear is capable of detecting 

sounds over a wider frequency range than the vocal apparatus can produce, and can 

detect changes in frequency that are far smaller than the smallest frequency perturbations 

that a speaker can intentionally generate. 

3.3.3 Sources of gross errors in fundamental period and period estimation 

There are various reasons why a particular algorithm may generate gross errors. Firstly, 

when there are adverse signal conditions, which can occur when there is a strong first 

formant, a rapid change in articulator positions or in the case of band-limited or noisy 

speech. Secondly, when there is inadequate algorithm performance, perhaps because the 

analysis window is too small in a short-term algorithm, or because of the absence of 

some feature used in the estimation process. Thirdly, because the algorithm is unable to 

deal satisfactorily with creaky voice. In this case, the inherent averaging in some 

algorithms may cause erroneous output to be generated. 

In addition difficulties can arise due to the recording conditions. Quite often the speech 

signal is degraded by amplitude and phase distortions, and background noise is almost 

always present to some extent. It is particularly difficult to get algorithms to operate 



well over telephone lines, because of phase and amplitude distortions, fading, and break- 

through from other signals. 

Strong first formant in vicinity of second harmonic 

Gross errors can arise when there is a strong first formant in the vicinity of the second 

harmonic, which results in its amplitude becoming significant or greater than that of the 

fundamental harmonic. This can lead to what are known as "doubling" errors, because 

this leads to a significant second peak in each period, which time-domain algorithms 

sometimes confused with the main peak. This is illustrated in figure 3.2. For 

comparison, a temporally simple speech pressure waveform is shown in figure 3.3. 

Frequency-domain and short-term algorithms face a similar problem with this class of 

signals, because the second harmonic dominates the short-term spectrum. In this thesis, 

gross errors that exceed the true values are known as chirp errors. 

The complementary type of errors to chirp errors are defined in this thesis as drop 

errors. In a time-domain algorithm they will occur whenever it misses out a period 

marker, giving the impression that the period is longer than it truly is. This situation 

can arise when there are rapid envelope changes in the speech waveform, and it  is 

especially associated with voiced sounds made with articulations that result in 

obstruction of the vocal tract, such as the sound 11-1. It can also occur due to missing 

secondary excitations in creaky voice quality speech or during diplophonic voicing 

(which is the tendency to generate pairs of pulses that can occur during even normal 

voice). 

3.3.4 The required operating frequency range 

The range of possible fundamental frequencies for human speech is wide. For an 

arbitrary utterance, the range over a large population of subjects can lie between 33Hz 

to 3100Hz by Moerner, Fransson & Fant, 1964. However, another investigation due to 

Catford,l964 (that did not include creaky voice) confined the range to between 70Hz 

and 1100Hz. For the purposes of singing, a somewhat wider range is required. Hess, 



1983 gives the range of 50Hz to 1800Hz to cover a bass to a soprano. 

For an individual speaker, the distribution of fundamental frequency depends upon the 

experimental conditions. It is particularly relevant whether the speech was taken from 

conversation or from read text. The frequency distributions from read text rarely exceed 

an octave range. Provided the distribution is plotted on a logarithmic scale, this 

fundamental frequency distribution comes close to a normal distribution (Risberg, l96 1 ; 

Schultz-Colson, 1975) 

Algorithms that perform speech fundamental frequency estimation usually restrict their 

operation to a sub-range of the possible fundamental frequency values. A good working 

range for an algorithm is between 50Hz and 800Hz, because this covers the range of 

most adult conversational speech (Hess, 1983). 

3.3.5 Required measurement resolution and accuracy 

The accuracy and resolution requirements for a fundamental frequency algorithm are 

determined by its intended applications. The human auditory sys tern is more sensitive 

to changes in absolute frequency at low frequencies, and in general the noticeable 

difference in frequency is proportional to frequency. The difference limen with respect 

to the fundamental frequency (DI,) for human listeners perhaps represents the ultimate 

required performance, which is typically 0.3-0.5% resolution of the fundamental 

frequency for steady state harmonic sounds. Most algorithms do not meet this 

specification. However, for most applications, less accuracy can be tolerated. 

The difference limen for linguistic significance is greater than for that of perception 

(McKinney, 1965). Thus for prosodic analysis, an accuracy of a few percent may be 

adequate. 

The required frequency (or time) resolution required is dependent upon the required 

application of the algorithm. For intonation training, a resolution of 3-4% will suffice 

(for example in a Voicscope, Abberton & Fourcin, 1973). There are also limits on the 



resolution of fundamental frequency values that can be displayed with such schemes, 

due to the limited number of pixels available for the graphics display. 

Consideration to human frequency difference limens suggest that a frequency resolution 

of 0.3%-0.4% of the fundamental frequency value would be ideally required by a 

fundamental frequency or period estimation algorithm. 

Requirements for profoundly deaf EPT patients 

The required frequency resolution for the profoundly deaf patients for whom high 

technology signal processing hearing aids are intended is only about 1% of the 

fundamental frequency values within the male frequency range and poor above about 

200Hz, which is several times worse than for normal listeners. 

3.3.6 Accuracy limitations due to time quantization of sampled signals 

There is an intrinsic accuracy limit in time-domain fundamental frequency estimation 

algorithms that operate using sampled digital signals which is due to the time 

quantization of the input signal. This introduces uncertainty into the location of an 

event in time. For example, at a sampling frequency of IOkHz, it is only possible to 

locate a time event to 1/10000 = 100 microseconds. For a fundamental freqiiency of 

lOOHz, this corresponds to an accuracy of 1%. At higher fundamental frequencies, this 

percentage error increases still further. Even at 100Hz, this error is greater than the 

auditory DL for frequency change. The same problem arises for short-term analysis 

algorithms that operate in the lag domain (for example auto-correlation, cepstral 

analysis, etc). 

There is a similar problem in the case of frequency-domain analyzers. In this case, a 

sampling rate of lOkHz and an analysis window of 1OOms (which is very long for the 

short term analysis of speech) gives rise to a frequency resolution of 10Hz. 

Consequently, in this case it is rhe lower frequencies that give a proportionally larger 

quantization error. Thus there is a 10% error at 100Hz, and a 2% error at 500Hz. With 



regard to this accuracy issue, Hess and Indefry point out (1987) that to reduce sampling 

accuracies to 0.5% up to the fundamental frequency of 500Hz requires a sampling 

period of 10 microseconds. 

Many algorithms use interpolation at their outputs to improve the time or frequency 

resolution of their estimates. Interpolation can easily be carried out in the case of 

frequency-domain algorithms and those employing short-term analysis. Interpolation is 

more difficult to use in time-domain algorithms, although the accuracy of location of 

peaks and zero-crossings can be increased using interpolation. Another approach to 

reducing quantization errors is by smoothing the frequency estimates, although this 

approach is not always guaranteed to improve accuracy. 

3.3.7 Required maximum rate of change of speech fundamental period 

In regularly excited speech (not creak), the maximum rate of change of period length 

is typically taken to be a 10% to 15% change between successive periods (Reddy, 1967). 

The maximum rate of change of frequency of the normal voice source was found to be 

about 1% per millisecond by Sundberg (1979). However, in voice qualities such as 

creaky, as well as in pathological speech, there can be much larger change per period 

than this figure suggests. 

The maximum rate of change on fundamental period usually presents no problems to 

time-domain analyzers, because they operate on a period-by-period basis. However, 

they do put an upper time window limit on short-term analysis procedures of around 

20ms -30ms. 

3.4 CATEGORIZATION OF SPEECH FUNDAMENTAL FREQUENCY ESTIMATION 

ALGORITHMS 

3.4.1 Preliminary classification 



McKinney (1965) states that a 'pitch' determination algorithm can be essentially 

decomposed into three stages. These are the pre-processor, the basic extractor and the 

post-processor, as illustrated in figure 3.4. The main task of the measurement is 

performed by the basic extractor stage. The main function of the pre-processor is one 

of data reduction, and the emphasis of features in the input speech to facilitate the 

operation of the basic extractor. The post-processor combines many functions, such as 

error correction and the generation of output in the desired format. 

3.4.2 Types of algorithm 

The techniques that have been developed to determine speech fundamental frequency 

are broadly classified into four main groups by Hess, 1983; Those that operate in the 

time-domain, those that operate over some short-term window of the speech, which he 

calls short-term analysis, those which are hybrids of the first two, and finally those that 

operate by direct measurement of vocal fold activity. The is often no clear-cut 

distinction between the first two types. It is important to understand what is meant by 

the terms short-term, time-domain and frequency-domain. 

Time-domain algorithms employ direct measurements on the speech signal and involve 

looking for temporal features in the speech pressure waveform (or in the filtered 

waveform), such as local maxima and minima. 

Short-term analysis procedures use some form of transformation of the data within a 

short (for example, 20rns) time window. The nature of the transformation depends on 

the particular method used. The estimate obtained with such an approach consists of 

a sequence of average fundamental period or frequency values obtained over the input 

interval. 

Frequency-domain algorithms make explicit 'frequency' estimates. There may be a 

frequency-domain interpretation to certain short-term operations which are implicit. For 

example, the auto-conelation technique can be implemented via a frequency-domain 

representation. 



The time-domain refers to analyses which use the same time base as the input speech 

signal. A time-domain analyzer gives rise to an output signal that consists of a series 

of excitation markers that delineate period boundaries. Time-domain operation thus 

generally presumes the local definition of fundamental period and gives rise to a period- 

by-period fundamental period estimates. 

The next chapter will examine some time-domain, short-term and laryngeal algorithms 

in more detail. 



Figure 3.1 Diagram showing voice source parameters. 

This illustrates; a) the excitation signal, and b) the corresponding period durations. 

(After McKinney, 1965). 



Figure 3.2 Speech pressure waveform exhibiting two peaks per fundamental period. 

The speech is shown in trace A. The corresponding laryngograph waveform in shown 

in trace B. This situation arises when the fmt  formant coincides with the second 

harmonic in the excitation spectrum. This situation can lead to "doubling error" in 

simple fundamental period estimation algorithms. The speech is the vowel N from a 

male subject. 



Figure 3.3 Temporally simple speech pressure waveform. 

Speech is shown in trace A. The corresponding laryngograph waveform in shown in 

trace B. It is relatively would be easy to determine the fundamental period of the 

speech in this case, even with a simple fundamental period estimation algorithm. The 

speech is the vowel "U", as in the word "but", from a male subject. 



I B A S I C  EXTRACTOR ( 

l 

POSTPROCESSOR 

Figure 3.4 Block diagram illustrating the basic stages involved in speech fundamental 

frequenc ylperiod, es tirnation. 

The pre-processing stage is involved with data reduction and extraction of important 

features of the speech signal. The basic extractor essentially performs the main task 

estimation of period or frequency. Finally, the post-processing stage converts the output 

from the basic extractor into a desirable format and may also perform error correction 

and smoothing of the raw estimates. 

(Taken from Hess, 1983; After McKinney, 1965). 



CHAPTER 4: ESTABLISHED METHODS OF SPEECH FUNDAMENTAL 

FREQUENCYIPERIOD ESTIMATION 

This chapter discusses the different approaches to speech fundamental period estimation. 

These are described under the different section headings of time-domain algorithms, 

short-term analysis algorithms and laryngeal devices, and some examples of particular 

types of each method are given. Because of the very large number of different methods 

that exist, they are only discussed at length to illustrate particular principles, if they are 

well established, or are used later in this thesis in comparison tests. 

4.1 TIME DOMAIN SPEECH FUNDAMENTAL PERIOD ESTIMATION 

4.1.1 Introduction 

The main strength of time-domain speech fundamental period estimation is its ability to 

make cycle-by-cycle measurements. This enables such algorithms to deal satisfactorily 

with irregular voice qualities (such as creaky voice) and with rapid changes In the 

frequency of vocal fold vibration. However, the price to be paid is that such algorithms 

can be more sensitive to noise. There are two main reasons for this. Firstly, the local 

key feature used by a typical algorithm, such as a signal peak, may be much more 

affected by noise than the gross overall waveform shape. In addition, the measurement 

is not averaged over several cycles, as is the case with short-term analyses. Of course, 

the estimates from a time-domain algorithm can be averaged afterwards (which if 

performed appropriately reduces noise), but this sacrifices the cycle-by-cycle estimation 

for greater noise resistance. 

Hess (1983) states that periodicity manifests itself in the speech waveform in various 

ways. One possible feature is the presence of a fundamental. Another is the existence 

of a structural pattern that approximately repeats each period. This pattern often exhibits 

high amplitudes at its onset and lower amplitudes towards its end. This follows from 

consideration of the source-filter model of speech production in which the vocal tract 

can be considered as a passive linear system dnven by impulse excitations (Fant, 1960). 



This model implies that a speech period is composed of a sum of exponentially decaying 

sinusoids. Additionally it follows that there may be abrupt changes in the waveform of 

the speech signal (or its time derivatives) at the excitation points. 

Time-domain fundamental period algorithms generate estimates in the form of a 

sequence of period markers that somehow utilize these characteristics. Hess (1983) sub- 

classifies time-domain algorithms in terms of the principle by which they detect the 

periodicity. These are shown in figure 4.1. One extreme approach to this involves the 

use of structural analysis. Algorithms of this class use a complex procedure to find a 

valid fundamental period from a set of basic measurements that are made directly on the 

speech waveform. The other extreme approach involves complex pre-processing of the 

speech signal to extract the fundamental harmonic, followed by a simple measurement 

and validation procedures on the temporally simplified waveform. Thus, in the former, 

case simple measurements are made and the burden of the task falls on a complex 

validation procedure that is then used to find the period estimate. In the latter case, the 

main burden of the work is allocated to the pre-processing whereas the validation 

procedures are relatively simple. 

There are also algorithms that operate somewhere in the middle ground between there 

two extremes by using some temporal simplification and some analysis of temporal 

structure. 

In addition there are also multi-channel algorithms, which typically involve the operation 

of a set of simple measurements on the output of each channel and use an overall 

control unit to select the appropriate output. 

4.1.2 Fundamental harmonic extraction 

The main characteristic of time-domain algorithms that employ first harmonic extraction 

is that they usually require the first harmonic to be present in the speech signal (unless 

it can be recreated by non-linear distortions within the algorithm). In addition they are 

sensitive to low frequency distortions of the signal. 



In this class of algorithms, the first harmonic is fust emphasised relative to the higher 

harmonics using linear andlor non-linear filtering. These systems fail drastically 

whenever the pre-processor does not sufficiently suppress the amplitudes of the higher 

harmonics. Under such circumstances, more than one period marker may be generated 

per speech period, giving rise to "chirp" errors (classes of errors are discussed fully in 

chapter 6). 

After the preprocessor, the temporally simplified waveform is then fed to a low 

complexity basic extractor. A basic extractor is typically some kind of threshold 

analyzer. Such an extractor generates a marker whenever the pre-processed signal 

crosses a threshold (which may be zero). A slightly more sophisticated variant of this 

type of extractor makes use of hysteresis, such that a marker is only generated after two 

thresholds have been crossed in a given sequence. Figure 4.2 illustrates these basic 

extractor types. 

To achieve an accurate period estimate, it is important for the basic extractor to locate 

the period markers accurately. For a non-zero threshold extractor systematic "fine" 

errors can arise due to the movement of a marker as the signal level changes, even if 

its frequency remains constant (Hess, 1983). Such fine errors can also arise during a 

formant transition, which can give rise to a phase change in the first harmonic (this is 

illustrated in figure 4.3). 

Analysis of zero-crossing extractor to avoid gross inaccuracies 

For the simple case of a zero-crossing basic extractor, McKinney (1965) gave an 

analysis showing the necessary relationship between the amplitude of the fundamental 

harmonic and the higher harmonics which must be maintained to avoid additional 

unwanted markers being generated. This is given by: 



where the amplitudes of the harmonics are denoted A(m), and m is the harmonic 

number. This relationship corresponds to the worst case when the phases of the higher 

harmonics are all 180 degrees out of phase with the fundamental. To meet this equality, 

the speech must be suitably pre-processed before it reaches the basic extractor. 

Linear pre-processing 

Linear filtering can have the effect of reducing the amplitude of the higher harmonics 

in accordance with its amplitude frequency response. To meet the necessary amplitude 

relationship between the fundamental and other harmonics (for example, the second), a 

substantial amount of low-pass filtering of the input signal is required. In the case of 

(non-zero) threshold extractors, larger amplitudes for the higher harmonics can be 

tolerated than for the zero-crossing extractor. Hess (1983) claims one needs 6dBloctave 

less attenuation from the low-pass filter if a threshold analyzer with hysteresis is 

employed, and in such a case the low-pass filter must reduce the amplitude of the 

harmonics by about 18dBIoctave. A suitable filter could therefore be constructed by 

cascading t h e  integrators, each of which provides 6dbloctave attenuation. 

Unfortunately, problems arise with this type of pre-processing when a large operational 

frequency range is needed, because high frequency signals become so attenuated that the 

system must deal with a very large dynamic range. If the frequency range exceeds 3 

octaves, this can give rise to a 54dB dynamic range variation solely due to changes in 

signal frequency, quite apart from the 30dB or so variation of speech that occurs 

anyway. An automatic gain control may be of some value, but it cannot overcome all 

of the problems associated with a large dynamic range. However this problem can be 

avoided if the analysis is restricted to a narrow range of operating frequencies (Baronin, 

1974). 

Tracking filters 

One way around the difficulties encountered in sufficiently suppressing the higher 

harmonics in a speech signal for processing by a basic extractor is to dynamically select 



appropriate fixed sub-bands, or by use of an adaptive filter that tracks the fundamental 

frequency. 

One of the earliest and simplest algorithms that employed several sub-ranges was due 

to Dempsey et al. (1953), and it employed three low-pass filters with different cut-off 

frequencies. The appropriate filter was then selected manually. Other systems adopt the 

same basic approach, but use two sub-ranges, one for men and the other for women 

speakers (Riesz & Schott, 1946; Dawe & Deutch, 1955). 

It is clear that the task of manually changing the operating band is an undesirable 

characteristic of these algorithms. To avoid this manual intervention, schemes have been 

developed that employ variable cut-off filters that can be automatically tuned to track 

the input fundamental frequency. There are two configurations of such schemes; those 

that operate in open-loop mode and those that operate in closed-loop mode. 

A pre-processing scheme adopted by Peterson & Peterson (1968) was adopted to 

circumvent the problems of using a single low-pass filter in conjunction with a simple 

basic extractor. The speech is first optionally half-wave rectified and high-pass filtered 

and then fed into a bank of low-pass filters. Only the outputs from the low-pass filter 

with cut-off frequencies greater than the fundamental frequency are automatically 

selected, using the principle that the lowest frequency present corresponds to the correct 

period estimate, so that only the fundamental harmonic reaches a basic extractor. 

There are various other algorithms that adopt the same basic approach as this one, such 

as the algorithms due to Hollein (1963) and Dibbern (1972). Care has to be taken with 

these algorithms so that the transients that occur as the different channels are selected 

do not interfere with the period estimates that are generated. 

Open loop systems typically use a simple crude fundamental frequency estimator to tune 

the tracking filter in the main estimator (Peterson, 1952; Miller, 1953; Barney, 1958; 

Martynov, 1958; Yaggi, 1962). The problem with this approach is that errors in the 

crude estimate can result in failure of the system. Consequently with respect to gross 



errors, the overall system only works as well as the crude estimator. However, when 

the main filter does track the fundamental correctly, the period can be very accurately 

estimated. 

Closed-loop systems make use of the output from the main tracking filter to obtain an 

estimate of the frequency range, which is then used to alter the main tracking filter 

(Riesz, 1952; Feldman & Norwine, 1958; Sapozhkov, 1963; Yasuo, 1962; Pirogov, 

1963; Peckham, 1979). Difficulties arise with this approach because there are often 

many stable states for the system, only one of which corresponds to correct operation. 

In particular the higher harmonics are sometimes mistakenly tracked instead of the 

fundamental. This leads to (chirp) errors that can persist for the duration of a voiced 

segment of the speech. 

Non-linear pre-processing 

Pre-processing is sometimes performed using non-linear functions which can sometimes 

have beneficial effects. For historical reasons related to ease of implementation, half- 

wave and full-wave rectification has received much attention in the past (McKinney, 

1965). Full-wave rectification is effective in increasing the level of the first harmonic 

relative to the level of the higher harmonics, unless the signal is almost sinusoidal. In 

this case, the effect is unwanted because it effectively doubles the periodicity of the 

signal. Put another way, full-wave rectification is beneficial, unless it is not needed in 

the first place, in which case it is detrimental. Half-wave rectification does not double 

the periodicity of sinusoidal signals, but its effects on asymmetric speech signals is not 

generally beneficial. 

4.1.3 Structural analysis 

Another approach to time-domain fundamental period estimation involves the temporal 

structure of the speech waveform. This general approach is further sub-divided by Hess 

(1983) into the analysis of exnema and envelope modelling (as shown in figure 4.4). 



Envelope modelling 

The idea behind envelope modelling follows from the earlier observation that the vocal 

tract can be considered to be a passive linear system excited impulsively. Therefore, 

after each impulsive laryngeal excitation, the speech signal will be characterised by a 

set of exponentially decaying sinusoids. In schemes that adopt envelope modelling, the 

envelope of a speech period is considered to be a decaying exponential function that 

starts from a maximum value at each excitation point. After an excitation, the envelope 

of the model gradually decays away. When the speech signal exceeds the modelled 

envelope function, a new excitation is assumed to have occurred and the envelope model 

is reset ready so that it is ready detect the next excitation point. Much early work was 

carried out on algorithms of this type using analogue hardware (Vermeulen & Six, 1949; 

Gruenz & Schott, 1949; Dolansky, 1954,1955; Anderson, 1960; Filip, 1967,1969). 

This class of algorithm is often implemented using a cascade of identical stages, each 

of which suppress the secondary peaks and enhance the principal peak (due to the 

excitation). Secondary peak suppression is performed using a peak detection circuit and 

primary peaks are then enhanced by subsequent differentiation. The main problem 

associated with this approach is to find the appropriate time-constants to fit the decay 

of the speech signal. If the time constant of the peak decay section is too short, then 

it will fail to suppress the secondary peaks. Conversely, if it is too long, primary peaks 

will be suppressed. This is particularly true when there is a rapid overall envelope 

changes in the speech which can give rise to a large principal peak followed by a 

smaller one. 

Peak Picker 

The peak-picker (Howard, 1986) is an example of a simple envelope modeler, based 

upon earlier work by Gruenz & Schott, 1949. A version of this algorithm used later in 

this thesis, is used here for comparisons, and it is a software implementation of a small 

battery powered device developed as part of the External Pattern Input (EPI) group 

cochlear implant prothesis, at University College London. With the use of algorithm 



like this, that makes use of peaks in the speech pressure waveform, it  is important to 

appreciate that the speech waveform is generally not symmetrical about zero (Anderson, 

1960), and the biggest peaks are usually those that correspond to positive pressure. 

Therefore, to achieve the highest level of performance, the speech must be polarised 

such that the major peaks are positive going. For live operation from speakers, the 

polarity only needs to be set-up once for a given microphone, but recorded or broadcast 

speech may generally be of either polarity. Consequently for such operation, the 

polarity will need to be checked. This is typically carried out by using the peak-picker 

with and without speech inversion, and then selecting the polarity that gives the best 

results. 

The operational waveforms i n  the peak-picker are shown in figure 4.5. Firstly the inpu t  

speech is filtered, using a 4-pole Butterworth low-pass filter with a cut-off frequency of 

450 Hz, which temporally simplifies of the speech pressure waveform by removing all 

but the first few harmonics. The next stage consists of a logarithmic amplifier. This 

helps minimise the effects of the large rapid amplitude variations in the level of the 

input speech. Next is the first peak-picker stage that consists of a function that has an 

output that follows the input only if the input is greater than the output. Otherwise the 

output decays linearly with time. This has the effect of suppressing secondary peaks in  

each cycle. A differentiator is then used to emphasize the discontinuities that occur at 

the onset of the primary peaks. The previous two steps are then repeated, to increase 

the suppression of any secondary peaks. If the algorithm has succeeded there is then 

only one peak left per period. A simple threshold is then used to locate these peaks. 

This threshold is typically set by iteratively adjusting the value and observing the output 

from the device. A cleaned-up pulse output is then produced using a monostable circuit. 

The peak-picker operates on a period-by-period basis and is thus able to retain 

irregularity in the laryngeal excitation. In addition, the input to output delay is relatively 

small, making it well suited for real-time applications in pattern processing hearing aids. 

Its main weakness is that its performance in noise and reverberant environmental 

conditions is inadequate for many applications. The peak-picker is quantitatively 

compared against other algorithms in chapter 9. 



Analysis of extrema 

The analysis of extrema relies on what are effectively expert systems to validate a set 

of measurements of the speech signal which are chosen to characterise its temporal 

structure, and at the same time discard unwanted information. For example, maxima 

and minima are often used as temporal features of the waveform. These markers are 

then subject to tests to ascertain whether or not a given marker could constitute a period 

marker. The marker validation procedure often needs to operate over a large time 

window, which results in a long inherent delay between the input and output that makes 

such algorithms unsuitable for real-time operation. 

Peak detection and global correction 

One algorithm that employs analysis of maxima and minima is due to Reddy 

(1966,1967). This algorithm was originally designed to be incorporated in a speech 

recognizer and operates on blocks of 25ms duration. The fmt  step involves locating the 

local maxima and minima within a block. These markers are then subject to a set of 

tests to eliminate markers that do not correspond to period markers. This involves the 

following: The absolute maximum in the block is first found. Maxima are then labelled 

significant if they are positive, if they are at least 2.5ms away from other significant 

maxima, if they are greater than 0.9 times the local absolute maximum, or if their 

amplitude is such that they lie above a linearly extrapolated line arising from the 

previous two significant maxima. If both of the last two tests fail, then a maximum may 

still be labelled significant if it constitutes a local maxima over 13.5ms. A similar 

procedure also applies to the definition of significant minima. The next step is then to 

label a maximum as significant a peak only if a significant minimum lies within 3.5ms. 

These significant peaks usually correspond quite well to period markers, but there are 

occasions where mistakes occur. Reddy then employs a global error comction. This 

algorithm operates by estimating the regularity of the markers and removing and adding 

them whenever necessary. This is achieved by predicting the current period on the basis 

of the past few periods. If the current period is greater or less than this by 12.5% then 

there is assumed to be an error. However, only certain classes of errors can then be 



corrected. For example, if there was another maxima near the principle peak, this can 

sometimes be the valid marker that was originally missed, and changing the period 

marker to this one corrects a "hop" error (an error due to a misplaced marker). Also, 

it is sometimes possible to remove extra markers which give rise to a "chirp" error (an 

error due to an extra unwanted marker). Similarly it is sometimes possible to insert 

another marker at a previously discounted maximum to avoid a "drop" error (an error 

due to missing a marker). Unfortunately, when the global correction routine has to deal 

with too many earlier errors, it can fail totally (Liedtke, 1971). 

Pitch Chaining 

Another algorithm that operates by direct analysis of the structure of the speech pressure 

waveform is due to Schaefer-Vincent (1983) and is known as pitch chaining. It operates 

by first extracting a skeleton of maxima and minima values from the time-sampled 

speech pressure waveform. All possible combinations of three maxima and all possible 

combinations of all minima are then subject to analysis by an expert system, to 

determine whether or not they represent the markers that define two adjacent period 

values (see figure 4.6). The tests include bounds on period values, a bound on the ratio 

of the period values and bounds on the relationship between the magnitude of the 

extrema. If the extrema pass the test conditions, they are then considered to be valid 

period twins. The algorithm then attempts to fit together the latest period twin with 

ones previously found to form a series of "chains". If a new period twin cannot be 

added onto an old one, which will happen if there are no old ones, or there is no 

coincidence in the period values, a new chain is started. Thus the "chains" correspond 

to the different ways in which the period twins can fit together. Consequently, a chain 

will generally have many branches from it, corresponding to possible different sequences 

of period twins. When a chain exceeds a preset length, its fundamental frequency values 

calculated and final values are output as frequency values in lOms frames, and all earlier 

chains are deleted. It is to be noted that the final stage in this algorithm involves 

frequency averaging. Consequently this algorithm does not give cycle-by-cycle 

estimates of fundamental frequency, although it could - but not without a long delay. 



Not all structural analysis algorithms use maxima and minima as primary operational 

features. For example, the algorithm due to Miller (1974, 1975) employs what he calls 

the excursion cycle, which is defined as the sum of all the samples between two 

consecutive zero-crossings of the signal. These markers are then subject to tests similar 

to those used by Reddy (1966, 1967) described above. 

Gold-Rabiner Algorithm 

Gold (1962) observed that algorithms that are based on the regularity of the signal tend 

to fail whenever the signal becomes irregular, such as when there are rapid changes in 

fundamental frequency or sound quality, or with irregular voice qualities like creak. 

Conversely, algorithms based on peak detection tend to fail when the speech does not 

exhibit strong peaks, which can happen, for example, in the case of nasals, back vowels 

or speech with falsetto excitation. Gold claimed that in order to achieve good 

performance with a structural analysis algorithm on both of these kinds of signal, it was 

better to use more than one "rule" to interpret the extrema of the speech. A first attempt 

to implement this principle was carried out using three individual basic period extractors 

that operated in parallel and whose outputs are then fed into a relatively simple 

combiner algorithm (Gold, 1962). A more sophisticated version of this algorithm, which 

is possibly the best known analysis of the structure algorithm, was developed by Gold 

and Rabiner (1969). The schematic diagram for this algorithm is shown in figure 4.7. 

The first stage consists of pre-processing using a low-pass filter with a 900Hz cutoff 

frequency. This has the effect of reducing the higher formants which can impair the 

accuracy of marker placement. The second stage results in the generation of a set of 

six pulse trains which depend on the maxima and minima of the pre-processed 

waveform; their relationship to the waveform is shown in figure 4.8. This results in the 

generation of pulses of height m, and m, at the positive peaks, pulses of height m, and 

m, at the negative peaks, and a peak-to-peak measurement pulses of height m, and m,. 

This set of measurements were arrived at by the authors by considering two extreme 

cases of input waveforms, as shown in figure 4.9. The fust of these is a pure sine wave. 

The second is a waveform that contains a fundamental and a strong second harmonic. 



It can be seen that in the case of the sine wave, measurements m,, q, m, and m, exhibit 

the appropriate periodicity, whereas in the case of the other waveform only m, and m, 

are appropriate. 

These six pulse trains are then fed into six identical simple period estimators. These 

operate by following peaks for a holding interval, and then exponentially decaying, as 

shown in figure 4.10. The time constant and holding times are both adapted on the 

basis of previous period estimate from the given detector. 

The six period estimates from the six basic detectors are then subject to an evaluation 

procedure. This is achieved by first forming a 6x6 matrix, as a function of time from 

the period estimates, with the columns representing the individual detectors and the rows 

representing the period estimates. The row represent the direct estimates from the basic 

extractors. Rows 2 and 3 are the estimates from the previous two periods, whereas the 

other three rows represent the sum of estimates from the first and second, the second 

and third and the first and third rows respectively. The reason for including the sums 

is that the individual detectors are biased towards generating output periods due to the 

second and third harmonics and under these conditions it is the last three rows that will 

give the correct estimates. The coincidence of values in the matrix then calculated, and 

the value that occurs the most frequently is taken as the period estimate. 

Another similar algorithm is due to Tucker and Bates (1978). In this algorithm, the 

speech is first subject to centre clipping (which involves setting small amplitudes to zero 

and is discussed later in conjunction with auto-correlation) which has the effect of 

reducing the effect of the formant structure whilst maintaining the periodicity of the 

signal. (Sondhi, 1968). Each peak that survives this process is then characterised in 

terms of five features, which are then used to form an overall period estimate in a 

similar way to in the Gold-Rabiner algorithm. 

4.1.4 Simplification of temporal structure 

In between the two extreme approaches of extraction of the fundamental harmonic and 



direct structural analysis of the speech waveform, one can adopt a compromise and 

make use of both principles; perform a degree of temporal simplification and then 

perform a simpler structural analysis of the waveform. Hess (1983) sub-classifies such 

schemes into those that perform inverse filtering and those that perform epoch detection, 

as shown in figure 4.1 1. The idea behind inverse filtering is that by passing the speech 

waveform through a filter that constitutes the inverse response of the vocal tract (the 

inverse filter), one can estimate the excitation signal. Epoch detection, on the other 

hand, relies on the detection of the discontinuities in the differential of the speech 

waveform that occur whenever the vocal folds snap together. 

Inverse filtering 

According to the source filter model for speech production (Fant, 1960), one can 

consider speech production to be due to the convolution of the excitation and the 

impulse response of the vocal tract, that is: 

where x(n) represents the sampled speech signal, p(n) represents the sampled excitation 

time function and h(n) represents the vocal tract impulse response. In the frequency- 

domain (the z-domain) this becomes; 

where X(z) is the z-transform of the speech waveform, P(z) is the z-transform of the 

excitation and H(z) is the z-transform of the vocal tract impulse response. From this 

equation, it can be seen that if the z-transform of the speech is divided by the z- 

transform of the vocal tract response, the result will be the z-transform due to the 

excitation. Therefore, if the inverse filter l/H(z) can be found, it can be used to remove 

the effects of the vocal tract from the speech waveform. 

Fant (1970) stated that for vowels and sounds that are not nasals, the vocal tract transfer 



function H(z) can be modelled using an all-pole filter, and this implies that the inverse 

filter is an all-zero filter with a state equation of the form; 

There are various ways to determine the coefficients of the inverse filter. However, 

conventional methods of formant analysis (for example involving spectrographic 

analysis) require much effort (Flanagan, 1972). A popular approach is based upon the 

technique of linear predictive coding, or LPC analysis as it is often known. This 

technique proposes that one cam predict the current sample x(n) of a signal from the 

past signal to within a certain enor limit e(n), that is 

The form of this state equation is the same as that of the inverse filter. For this to 

constitute a useful model of speech production, it is important that the enor term be 

small and the coefficients a,, %, ..a, be known. Because the vocal tract alters its 

response as a function of time, a given set of coefficients are only relevant over short- 

time intervals, and consequently must be estimated using short-term analysis. The 

optimization of coefficients is performed by minimizing the energy of the error signal 

over a frame (which is typically 10-30111s in length). This involves formulating the error 

as a function of the predictor coefficients and then solving a set of linear equations 

(Markhoul, 1975; Markel & Gray, 1976). Solving the predictor equation for the error 

gives; 

and hence provides an estimate of the inverse filter. If the predictor was able to predict 

completely the input signal x(n), the error signal would always be zero. It follows from 

linear filter theory that in this case the speech signal would consist of a sum of decaying 

sinusoids. Of course, this situation only arises in speech production between excitation 

points (the only time the system is stationary). Since the analysis assumes impulsive 



excitation, there is a peak in the error signal at each excitation point corresponding to 

the excitation (which can be used to locate the excitation point). 

The LPC residual signal is directly used by some timedomain fundamental period 

algorithms (Atal & Hanauer, 197 1; Strube, 1974). The LPC prediction error for some 

vowels is shown in figure 4.12. In addition, it is also used as a pre-processed input to 

short-term algorithms, such as the SIFT algorithm (Markel, 1972) that is discussed in 

a later section. 

There are various problems associated with inverse filtering. The LPC analysis is 

carried out by performing a minimization of the error signal. Unfortunately, this 

minimization does not always preserve the excitation signal, which can sometimes also 

be lost by the procedure (Gold, 1977). Another problem occurs when the first formant 

coincides with the fundamental harmonic in the signal. In this case, by removing the 

effect of the formant there is a tendency to cancel out the fundamental and produce an 

inverse filtered waveform without it. 

Epoch detection 

The term epoch was first introduced by Ananthapadmanabha & Yegnanarayana (1975, 

1979). The idea behind epoch detection is that it is possible to detect isolated events 

or "epochs" that arise at the moment of vocal fold closure. The first task of this class 

of algorithm is therefore to emphasise features which correspond to the vocal fold 

closure points in the speech signal. 

One of the first algorithms of this kind was due to Smith (1954, 1957). The initial pre- 

processing employed a bank of 32 second order bandpass filters, the outputs from which 

are full-wave rectified and smoothed, This has the effect of performing amplitude 

demodulation of the different frequency bands by means of envelope detection. The 

smoothed outputs are then summed. There is sufficient phase coherence between the 

different channel envelopes because all the resonances of the vocal tract are 

simultaneous1y excited each time the vocal folds snap together and consequently they 



add synchronously after the excitation point and then decay away. The point of 

inflection of this resulting waveform is then used to mark the onset of successive 

periods. 

This system was also implemented by Yaggi (1962,1963) using a channel vocoder. In 

this case 18 channels were used ranging from 70Hz to 4kHz, employing bandwidths 

between 130Hz to 390Hz for the lowest to highest channels respectively. A block 

diagram of this system is shown in figure 4.13. The channel outputs were again full- 

wave rectified and first order low-pass filtered. Figure 4.14 illustrates their outputs. 

This scheme still operates if the fundamental harmonic is absent, and the coincidence 

of the first forrnant with the fundamental harmonic which can cause the failure of 

inverse filtering similarly presents no difficulties. 

A slightly different algorithm is due to Rader (1964) using Hilbert filters rather than 

envelope detectors. 

The algorithm due to Ananthapadmanabha & Yegnanarayana (1975,1979) functions by 

detecting the discontinuity in the speech waveform that occurs as the vocal folds snap 

together. They define an epoch as follows: 

"Let f(t) be a function defined over the interval (a,b), and zero outside the interval. Also 

let f(t) posses continuously differentiable derivatives in the interval (a,b). Then the point 

of discontinuity of the lowest ordered derivative will be regarded as an epoch ..." 

The response of this system to speech is shown is figure 4.15. Problems arise in 

practice when there is more than one epoch per period. In addition, the algorithm does 

not function well when the input signal has weak discontinuities, such as in the case of 

falsetto voice and voiced fricatives. 

4.1.5 Multi-channel analysis 



Many algorithms, including some that have already been discussed in this chapter, are 

examples of multi-channel analyzers. We shall consider three types of multi-channel 

analyzers (after Hess, 1983). 

l] Main channel and auxiliary channel principle. In this configuration, a crude auxiliary 

channel is used to adapt the operation of a main channel. This is the approach adopted 

by open-loop tracking filter systems, where the auxiliary channel sets the context for the 

operation of a more accurate main period estimator. 

21 The sub-range principle. In this configuration, there are several similar or identical 

algorithms that are individually optimised for operation over different frequency sub- 

ranges. Their outputs are then somehow combined together to generate an overall 

estimate. 

31 The multi-feature principle. In this type of system, the channels are independent and 

each either process different parameters of the input signal, or process similar features 

in different ways. Not all parts of such a system have to be independent. For example, 

common pre-processing may be employed. Of course, there must again be a common 

data fusion stage, where the different signals are combined together to estimate the 

fundamental period value. 

There are two main problems with multi-channel algorithms. The first is how the results 

from the separate channels are combined together. In most cases, at a given time all 

channels will generate some kind of period estimate, although not all will be useful. 

Quite often some basic decision rule is applied, such as the selection of the estimate that 

corresponds to the longest fundamental period, or by choosing the period estimate that 

has the highest number of occurrences. 

The other problem relates to how the period markers obtained from different channels 

should be synchronized, because markers from different channels can differ in phase 

(that is to say, a different channel may use a different point in each speech cycle to 

mark the period). This phase relationship between markers from different channels must 



be taken into account. This problem becomes simple if one does not require the phase 

information, in which case some kind of averaging of separate channel estimates can 

then be used. 

4.2 SHORT-TERM SPEECH FUNDAMENTAL FREQUENCY ESTIMATION 

4.2.1 Introduction 

Short-term fundamental frequency estimation algorithms differ from time-domain 

algorithms in that some kind of transformation is applied to the speech signal, and it is 

this that is subject to measurement to estimate the fundamental frequency or 

fundamental period. 

As a result of the way in which evidence is combined over the observation window, 

short-term approaches give rise to fundamental frequency estimates that correspond to 

the average value over the analysis window. Therefore short-term analysis techniques 

are unable to perform estimation on a period-by-period basis, and they generally do not 

make use of phase information. This does have the advantage that they are not sensitive 

to phase distortions that may adversely affect some simple time-domain techniques. In 

addition, because they make use of evidence from all the data within the input window, 

such techniques are generally robust in the presence of unwanted noise and signal 

corruption. They often require substantially more computation than time-domain 

techniques, although with fast modem digital computer technology this does not 

constitute as much as a problem as it did in the past. 

Short-term analyses include spectral analysis of the speech signal, which operate by 

transforming the input to the frequency-domain, and lag-domain analyses, such as auto- 

correlation. A sub-classification of short-term analyses is shown in figure 4.16. 

4.2.2 The principle of short-term analysis 

As previously stated, speech is a non-stationary signal. Principal characteristics of the 
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speech signal, including its periodicity, change as a function of time. Consequently, in 

order to usefully estimate such parameters, it is their momentary values that are of 

interest, rather than their long time average values. The short-term value xs(n,q) of a 

sampled signal x(n) is typically estimated by first multiplying a section of the signal 

with a time-function w(k) known as a window. 

The window function, represented here as w(k) is non-zero only over a short interval. 

For example, in the case of a rectangular window: 

( = 1 for k = -k/2 to k/2 

w(k) I 
{ = 0 otherwise 

The analysis is then carried out on the windowed signal xs(n,q) for all the data points 

q for which the result is required. The parameter extracted at point n is known as a 

frame. 

The window length k is selected to be long enough so that there are sufficient samples 

within the window to reliably estimate the parameter, and short enough such that the 

parameter does not change too much over the window. To ensure several periods (at 

least two) fall within a frame at the lowest frequency, a window around 20-50ms in 

duration is typically used. The shape of the window also influences the results obtained 

from the analysis, since the multiplication of the input signal by a window has the effect 

in the frequency-domain of convolving the frequency response of the window with the 

spectrum of the signal. A full discussion of such issues appear in several textbooks 

(Rabiner & Schafer, 1978; Oppenheim & Schafer, 1975; Hamming, 1980) 

Characteristics of short-term anal yzers 

The basic operational steps in different kinds of short-term analysis algorithms are 



generally similar. A typical processing scheme is shown in figure 4.17, in this case for 

a frequencydomain analyzer. Sometimes the signal is initially pre-processed to reduce 

its temporal complexity (using low-pass filtering, centre clipping or inverse filtering). 

Then the signal is divided up into time frames and the specified short-term 

transformation is then carried out on each frame, the effect of which is to generate a 

signal containing a peak or peaks, the location(s) of which are determined by the 

fundamental period or frequency. In addition, the degree of periodicity is usually related 

to the height of the peaks. The next step involves using some algorithm to identify the 

location of the peaks. The peak height is often compared with a preset threshold so that 

a voiced/unvoiced decision can be made. Finally, there is sometimes a post-processing 

stage that may perform interpolation around the peaks to improve their location accuracy 

and attempt to correct any errors that were made. 

Problems with irregular speech excitation 

Because the function of a short-term algorithm is essentially to detect the periodicity of 

the input signal, these algorithms run into difficulties when the signal contains irregular 

periods. There are two ways in which an algorithm can fail under these conditions. 

l] If the analysis frame is short, then a frame may only contain irregular periods (this 

is also the case if the signal is all irregular) and consequently the algorithm may 

consider the speech unvoiced, and generate no period estimate. 

21 If the analysis frame is wide, then the contribution a few irregular periods to the 

analysis will be small and consequently there will be little or no indication of 

irregularity in the frame estimate. Although this does not give a good indication of what 

is really happening in the signal, this situation is still preferable than a failure to detect 

voicing. 

Computational considerations 

The majority of the computational effort with this type of algorithm is taken up by the 



short-term transformation. Hess (1983) stated that most short-term transformation of an 

input vector X (containing all the input signal samples within a frame) can be viewed 

as a matrix multiplication with a transformation matrix W that results in an output 

vector X; that is 

One important observation concerning this operation is that the computation will, in the 

general case using a direct implementation, increase with the square of the number of 

samples in the input vector. This is a good reason for keeping the input window as 

small as it can be. However, in the case of spectral transformations the number of 

samples in the input window determines the resolution of the output frequency estimates; 

the fewer the input samples, the lower the spectral resolution. To circumvent this trade- 

off, it is quite often better to perform output rather than input interpolation to increase 

the resolution of the frequency estimates, because it requires less computation. 

There are various ways to reduce computation. For example, it may be possible to re- 

implement the transformation in a less computationally intensive way. For example, a 

Fourier Transform can be computed using the FFT (Fast Fourier Transform), due to 

Cooley & Turkey (1965). Alternatively, it may be possible to avoid multiplication, 

which is often a computationally expensive operation. This is the case with the AMDF 

algorithm that operates in a similar way to auto-correlation (Dubnowski et al., 1976). 

Both algorithms are discussed in the next section. 

4.2.3 Lag domain analysis 

One of the earliest forms of short-term analysis employed correlation techniques. 

Correlation provides a measure of the similarity between two input signals. A special 

case that is of particular interest for fundamental period estimation arises when the input 

signal is correlated with itself, known as auto-correlation. In the case of the sampled 

input signal x(n), the auto-correlation r(d) is defined as: 



Where the parameter d represents the lag between the input signal and a delayed version 

of itself. The auto-correlation function has several important properties. Firstly, in the 

case where the input signal is periodic with period P samples, the auto-correlations is 

also periodic over the same interval; that is 

In addition, the auto-correlation is an even function and attains a maximum value at lag 

d=O at which point the value r(0) corresponds to the power in the input signal. So far 

we have considered only the long-term auto-correlation. In order to perform short-term 

analysis, it is necessary to modify the definition slightly to include a window function. 

One possible definition after Rabiner (1977) is as follows: 

where q is the starting sample for the short-term analysis and the window w(i) forces 

sample value to zero outside the interval 0 <= i <= N. An example of the auto- 

correlation of voiced speech is shown in figure 4.18. 

The period of a periodic input signal can be found by locating the first peak (from the 

origin) in the short-term auto-correlation, the lag of which corresponds to the 

fundamental period value T,. Unfortunately, the results obtained using the auto- 

correlation directly (or on low-pass filtered) speech are rather poor, because the formant 

structure of the speech can affect the location of the major peak (Schroeder, 1970). 



To avoid this problem, it is desirable to pre-process the signal to suppress the effect of 

the formants. Such techniques are sometimes known as "spectrum flatteners" because 

their effect is to remove the prominent peaks in the spectrum of the signal due that are 

to the formant resonances. One such technique is known as centre clipping, and this 

makes use of the instantaneous non-linearity shown in figure 4.19 (Sondhi, 1968). Its 

effect is to set all signal values below a pre-set percentage of the short-term peak to 

zero. The effect is shown in figure 4.20. It can be seen that its effect is to remove 

many of the smaller peaks in the signal that arise to the dampened resonances of the 

vocal tract. As a result, the auto-correlation of a centre-clipped signal contains 

considerably fewer extraneous peaks, and such a scheme performs much better in speech 

fundamental period estimation (Dubnowski et al., 1976; Rabiner et al., 1977). 

As well as centre-clipping, Sondhi (1968) also proposed spectral flattening by means of 

the use of a set of bandpass filters. The outputs from a bank of bandpass filters (with 

band-widths around 100Hz) are divided by their short-term envelopes, and the channels 

once again added together. Sondhi stated that this system was inferior to centre 

clipping. 

The SIFI' Algorithm 

Another approach to spectral flattening is to employ an inverse filter. A system 

adopting this approach is due to Markel (1972) and is known as the SIFT (Simplified 

Inverse Filter Transformation) algorithm. A schematic diagram for this scheme is shown 

in figure 4.21. 

The first step is an initial low-pass filtering at 900Hz and subsequent decimation of the 

speech from a lOkHz to a 2kHz sampling rate in order to reduce the subsequent 

processing load. The next stage involves explicitly calculating a linear filter to 

approximate the inverse vocal tract and excitation source responses using the auto- 

correlation method of LPC analysis. A relatively low order (fourth) filter is sufficient, 

because there will generally be at most two formants in the O-lkHz range. This inverse 

filter is then used to temporally simplify the speech pressure waveform. Auto- 



correlation is then used to estimate its fundamental period. Because the sampling rate 

at this point is rather low (2kHz), it is then necessary to employ interpolation around the 

peak in the auto-correlation function to increase the resolution of the period estimate. 

This algorithm suffers from the limitations associated with the inverse filtering process, 

and there are problems when the speakers frequency range is high (for example in the 

case of children) because the spectral flattening tends to fail when there is no more than 

one harmonic in the 0-900Hz range. 

Average Magnitude Difference Function (AMDF) 

Another function that measures the similarity between a signal and a delayed version of 

itself is the average magnitude difference function (Ross et al., 1974). This is defined 

as; 

This function exhibits a strong minimum when the lag d becomes equal to the 

fundamental period To, and has some similarities to the auto-correlation function. 

Because the AMDF function does not employ multiplications, it is cornputationally less 

demanding than auto-correlation, although it is more susceptible to changes in input 

signal intensity (Hess, 1983). 

There are other approaches to fundamental period estimation that use distance functions 

other than the AMDF. For example, Nguygen & Imia (1977) and Sanchez (1977a,b) 

use a more general function of which the AMDF is one case. Ney (1982) used a 

generalized distance function in conjunction with dynamic programming. One 

disadvantage of this last technique is that it requires all the speech samples within a 

voiced segment to be present before the optimum estimate can be calculated. 

4.2.4 Frequency-domain analysis 



Frequency-domain algorithms operate on some kind of spectral representation of the 

signal. They can take advantage of the harmonic structure of the excitation, and in some 

algorithms the fundamental does not even have to be present for such schemes to 

function. A valuable feature of frequency-domain analyzers is that the resolution of 

their frequency estimates can be increased relatively easily by means of interpolation. 

The simplest frequency-domain analysis of speech fundamental frequency would simply 

involve searching the short-term spectrum for the first harmonic. This approach will, 

of course fail if it is weak or not present. In addition, the accuracy will be low because 

the relative frequency resolution is worse the lower the frequency. To get around these 

problems, algorithms more often measure the spacing between adjacent harmonics, or 

compute weighted averages of the higher harmonic frequency values. 

Harmonic product spectrum 

One technique that combines together estimates from all the harmonics is based on the 

principle of spectral compression, and uses the logarithmic harmonic product spectrum 

(Schroeder, 1968; Noll, 1970). The short-time log power spectrum is compressed along 

the frequency axis by integer factors, and the individual compressed versions are then 

added together. This operation is defined by 

K K 

P(m) = Z log lx(km)12 = 210g~x(km) l  

k= l k=l 

where X(m) represents the input spectrum and P(m) represents the log harmonic product 

spectrum which is the sum of K frequency compressed versions of the input spectrum. 

For voiced speech, harmonics of the fundamental frequency coincide and add, whereas 

this does not generally happen at other frequencies. This results in a peak at F, which 

becomes sharper as the number K increases. This is illustrated in figure 4.22. One 

strength of this algorithm is that it has been found especially resistant to noise, because 

the contribution in the input spectrum X(m) due to noise does not add constructively 



after the stages of compression. Another strength is that the fundamental harmonic does 

not need to be present with this algorithm. 

Frequency and Period histograms 

Another scheme, proposed by Schroeder (1968) involves building up histograms of the 

frequencies of the peaks present in the short-term spectrum, which occur at harmonics 

of the fundamental frequency. The f~quenc ies  of the peaks are then divided by two, 

and added once again to the histogram. The procedure is repeated with compression 

factor of 3,4 etc. This results in a peak occurring at the fundamental frequency, which 

can then be detected. 

Harmonic pattern matching 

An algorithm due to Martin (1981,1982) employs the principle of harmonic pattern 

matching by means of applying a comb filter to the short-term amplitude spectrum of 

the input signal. This involves searching for values of the spectrum that are situated at 

harmonic frequencies, such that their sum is a maximum over a given frequency interval. 

The fundamental corresponding to the harmonic structure that has the largest sum is 

considered to be the fundamental frequency of the signal. Thus, expresses 

mathematically, a spectral comb C(m,p) is defined as a series of impulses: 

C(m,p) = C(k) if m = k; k = l,2,3 ... M 

= 0 otherwise 

where p is the trial fundamental frequency (This value of p is determined by the spectral 

analysis). For each p the input spectrum A(m) is multiplied by the comb C(m,p) and 

the resulting components are added up to give the harmonic estimator function AJp) as 

follows: 

N / ~ P  

A&) = C A(kp)C(kp,p) 

k= l 



The value of p at which A, is maximal is taken as the estimated fundamental frequency 

F,. In practice, the comb "teeth" must be weighted to avoid octave errors (that is, errors 

where the estimate is wrong by a factor of 2). 

Another group of algorithm that have similarities to harmonic compression are those that 

adopt the principle of maximum likelihood period estimation (Wise et al., 1976; 

Friedman, 1977). Both approaches make use of a comb filter that enhances the 

harmonic structure and is optimally matches to the signal. However, in the latter cases, 

the problem is formulated (in the lag domain) with respect to the time waveform of the 

signal, rather than its spectrum. 

Psychoacoustically-based fundamental frequency estimation 

There are various algorithms that apply models of pitch perception to the estimation of 

speech fundamental frequency. One such model is based on a the model by Goldstein 

et al. (1973) and was used by Duifhuis, Willems & Sluyter (1978, 1979, 1982). The 

overall procedure is somewhat similar to that proposed by Martin (described above). 

The algorithm uses what is described as a "harmonic sieve", which is a spectral comb 

of finite resolution that filters out all except harmonically related frequency values from 

an input spectrum. The estimated fundamental frequency F,, is computed as the 

maximum likelihood estimate from all the peaks that pass through the sieve. Another 

similar algorithm is due to Terhardt (1972a,b; Terhardt et al., 1982a,b). 

Gepstrum Processing 

The cepstral technique (No11 1964,1967) is a special case of what is known as 

homomorphic filtering (Oppenheim & Schafer, 1975). The idea behind the cepstrum is 

to separate out from the speech waveform the effect of the excitation source and the 

response of the vocal tract. Thus we wish to undo the convolution 



where x(n) represents the speech signal, p(n) represents the impulse response of the 

vocal tract, s(n) represents the excitation signal and * denotes convolution. In the 

frequency-domain, this becomes 

where 

where F( ) denotes the Fourier transformation. By taking the logarithms of the power 

spectra, this relationship becomes additive. That is; 

The voiced excitation signal manifests itself in the log power spectrum of the speech as 

a high frequency cosine-like ripple due to the harmonics, whereas the vocal tract 

response gives rise to a low frequency ripple (Noll, 1967). This is illustrated in trace 

a) in figure 4.23. By calculating the inverse Fourier transform of the log power 

spectrum, one then gets back to a time-domain signal known as the cepstrum of the 

input signal, in which the temporal effects of the vocal tract and excitation are separate. 

Thus the cepstrum exhibits a strong peak at a quefrency (which is the term used to 

denote time in the cepstral domain) equal to the fundamental period duration To of the 

input signal (see trace b) in figure 4.23). As in the case of auto-correlation, the height 

of this peak relates to the periodicity of the input signal, and if it falls below a preset 

threshold level, the input is assumed to be unvoiced. Implementations of cepstral speech 

fundamental period estimation often additionally employ a set of rules (known as the 

No11 rules) to locate the appropriate peak in the cepstrum, which involves adapting the 



threshold on basis of past period estimates, as well as checking for possible period 

doubling and halving conditions. These rules reduces the number of gross errors 

generated by the technique. 

To summarise, the cepstrum is the spectrum of the logarithm of the power spectrum of 

the speech pressure waveform and for voiced speech, the cepstrum has a peak, the 

location of which corresponds to the fundamental period. Of course, all the analysis 

must be performed on a short-term basis for reasons previously discussed. A schematic 

diagram for cepstral period estimation is given in figure 4.24. 

At the time it was fust published, the cepstral technique constituted a breakthrough, 

since it was much more reliable than many other approaches. Consequently, for a long 

time it was adopted as a reference against which other algorithms have been compared 

(Liedke, 197 1; Markel, 1972; Moorer, 1974; Martin, l98 1, 1982). However, the cepstral 

technique requires that there be many adjacent harmonics in the input signal; otherwise 

there will not be periodic ripples in the log power spectrum of the input signal. For 

example, the cepstral technique cannot estimate the fundamental frequency of a 

sinusoidal signal. On the other hand, the cepstral technique is quite able to deal with 

a strong formant structure in the input signal. Therefore, the cepstrum behaves in a 

complementary way to auto-correlation, which experiences difficulty with strong 

formants but is able to deal with pure sinusoids. 

4.3 LARYNGEAL MEASUREMENT OF SPEECH FUNDAMENTAL PERIOD 

4.3.1 Introduction 

Laryngeal devices operate by attempting to estimate vocal fold activity by direct 

measurement. When this approach is successful, it leads to a signal that itself is 

temporally simpler that the speech pressure waveform. Consequently, the fundamental 

period of voiced speech can be estimated from such signals using relatively simple 

extractors. There are two basic approaches to estimating the vocal fold activity and 

these involve either using contact microphones or an electro-glottograph. Photographic 



techniques for the examination of vocal fold vibration using strobe lights have also been 

used, but they are not practical for everyday use. They do, however, provide useful 

insight into the interpretation of electro-glottographic signals. 

Contact microphones 

Contact microphones are sensitive to vibrations as well as acoustic pressure variations, 

and when such a device is placed on the neck in the vicinity of the larynx, the detected 

signal reflects vocal fold movement and response of the body to the acoustic disturbance 

in the trachea. McKinney (1965) made several observation concerning the use of 

contact microphones. To achieve good results, it is necessary that an airtight seal is 

maintained around the microphone, and that the output waveform changes according to 

its location and the neck of the used. Contact microphones are also sensitive to 

movement of the speaker. However, the output waveform is temporally simple and 

relatively unaffected by the movement of the articulators, although the waveform shows 

little relationship to the excitation derived from inverse filtering or glottal photography. 

Overall, McKinney decided that such microphones were not of great value in speech 

fundamental frequency estimation. 

An electro-glottograph operates by measuring the conductance across the neck at the 

level of the vocal folds, which provides an estimate of vocal fold contact and therefore 

vocal fold movement. Again, the output waveform is well defined and temporally 

simple, and is even less influenced by the action of the articulators than contact 

microphones. One such device is the laryngograph (Fourcin & Abberton, 1971). 

4.3.2 The laryngograph 

As stated previously in chapter 2, the laryngograph works by measuring the conductance 

across the larynx at the level of the vocal folds. The output waveform from the 

laryngograph thus gives a direct measure of vocal fold activity and is temporally much 



simpler than the corresponding speech pressure waveform. The point of closure of the 

vocal folds, which gives rise to the main peak in excitation, can be easily determined 

from the laryngograph output waveform (Lx). Therefore, by means of a relatively 

simple time-domain fundamental frequency estimation algorithm, a good estimate of 

speech fundamental frequency can be obtained. One big advantage of the 

laryngographic technique is that it is easy to perform period-by-period estimation and 

consequently the smearing of fundamental frequency values across time is avoided. 

Hess argues that the laryngograph can form the basis of an ideal instrument for speech 

fundamental period estimation because it is robust, reliable, does not interfere with 

articulation and is essentially immune to environmental noise (Hess,1983; Hess & 

Indefry, 1984). However, it is important to appreciate the limitation of the laryngograph 

in this application (as discussed in chapter 2). 



MUL TICHA NNEL T I M E - D O M A I N  
ANALYSIS P I T C H  D E T E R M I N A T I O N  

FUNDAMEN TA L 
HARMONIC 

STRUCTURAL 

S TRUC TURE 

SEQUENCE 
SIMPLI-  

FICA TION 

ANALYSIS (WITH 
HYSTERESIS) 

DETECTION LPC RESIDUAL 
INVERSE FILTER 

CROSS I NGS 
ANALYSIS 

Figure 4.1 Classification of timedomain fundamental period estimation algorithms. 

These approaches are explained in the main text. 

(After Hess, 1983). 
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Figure 4.2 Sub-classification of fundamental harmonic detection techniques using 

threshold analyzers. 

These approaches are explained in the main text. 

(After Hess, 1983). 
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Figure 4.3 Effect of rapid changes in formants on the estimated fundamental frequency 

derived using a threshold analysis. 

Trace a) shows an input sinusoid. This is fed into a 2nd order time-variant filter, which 

simulates a formant transition between 300Hz and 650Hz in 90ms, and its output is 

shown in trace b). The ratio of estimated fundamental period to true fundamental period 

for a zero-crossing analyzer and a threshold analyzer (operating at 10% of the signal 

peak) are shown in traces c) and d) respectively. It can be seen that there is a deviation 

of several percent in both cases. 

(After Hess, 1983). 
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Figure 4.4 Sub-classification of structural analysis fundamental period estimation 

technique S. 

These approaches are explained in the main text. 

(After Hess, 1983). 
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Figure 4.5 Operational waveforms in the peak-picker. 

The stages of processing and the operational waveforms generated at each stage are 

shown. The output of a laryngograph is shown in the bottom trace. Full details appear 

in the main text. 

(After D M Howard, 1986). 



IN PUT WAVEFORM 

POSSIBLE PERIOD TWINS 

Figure 4.6 Generation of period twins in the pitch chaining algorithm. 

The first stage of operation in the generation of a skeleton of extreme values of the input 

speech waveform. This is illustrated in the fmt two traces in the diagram for a simple 

example waveshape. The next stage is the generation of all possible sets of three period 

markers (the period twins), illustrated in the remaining traces. These are then subject 

to a set of conditions to remove unlikely candidates before a period estimate is made. 

(Algorithm after Schafer-Vincent, 1983). 
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Figure 4.7 Schematic diagram for the Gold-Rabiner algorithm. 

The input speech is first low-pass filtered (state l), and then the signal peaks are 

examined (stage 2). Six different measures from the previous stage are then fed into a 

set of six period estimators (stage 3). Finally the outputs from the basic extractors are 

examined and the period value is estimated (stage 4). 

(After Gold & Rabiner, 1969). 



Figure 4.8 Relationship between measurements m, - m, and the corresponding features 

of the waveform used in the Gold-Rabiner algorithm. 

These signal measurements are explained more in the text. 

(After Gold & Rabiner, 1969). 

Figure 4.9 Behaviour of basic measurements in the Gold-Rabiner algorithm for two 

simple waveforms. 

The f m t  case shown is a pure sine wave and the second is a waveform with a strong 

second harmonic. 

(After Gold & Rabiner, 1969). 



V A R I A B L E  B L A N K I N G  V A R I A B L E  EXPONENTIAL 
TIME T l DECAY 

Figure 4.10 Operation of the basic extractor used in the Gold-Rabiner algorithm. 

It operation is such that a large measurement pulse can mask preceding smaller ones by 

means of a blanking interval and an exponential decay. Further details appear in the 

text. 

(After Gold & Rabiner, 1969). 
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Figure 4.1 1 Sub-classification of temporal simplification techniques. 

These approaches are explained in the main text. 

(After Hess, 1983) 



S~CNAL PREDtCTK)N ERROR 

Figure 4.12 Speech signals and their comsponding LPC prediction error. 

The input differentiated speech (from top to bottom) corresponds to the vowels (i, e, a, 

0, U ,y). 

(After Strube, 1974). 
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Figure 4.13 Schematic diagram for multi-channel epoch detector used by Yaggi. 

(After Y aggi, 1962). 
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Figure 4.14 Operational waveforms from multi-channel epoch detector used by Yaggi 

The bandpass filters covered the range of 120Hz to 3.8kHz and their bandwidths varied 

between 114Hz to 442Hz, from top trace to bottom trace respectively. The speech is 

the vowel "a" from "algorithms" spoken by a male subject. 

(After Yaggi, 1962). 



Figure 4.15 Output waveforms from epoch detector based on the identification of 

discontinuities in the speech waveform. 

Example of the responses obtained in the case of vocal fry (creak), modal register 

(normal voice) and falsetto voice. In each case the speech pressure waveform appears 

in trace A, and the output from the epoch filter is shown in trace D (traces B and C 

show intermediate results used to compute the final output and represent the bandpass 

filtered input and the 90 degree phase-shifted bandpass filtered input respectively). The 

speech token is for the vowel /E/ produced by a male subject. Notice that the system 

only operates usefully when the glottal closures are well defined. 

(Taken from Ananthapadmanabha & Yegnanarayana, 1979). 
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Figure 4.16 Sub-classification of short-term fundamental frequency estimation 

algorithms. 

These approaches are explained in the main text. 

(Taken from Hess, 1983). 



Figure 4.17 Schematic diagram for a frequency-domain fundamental frequency analyzer. 

Possible different stages of operation are illustrated. These consist of pre-processing 

stage, the division of the input into frames, followed by the computation of a short-term 

transformation on each frame. Some kind of operation on the spectrum is then 

performed, followed by the detection of a principle peak. Finally interpolation and 

smoothing are carried out. 

(Taken from Hess, 1983). 



Figure 4.18 Voiced speech and its corresponding short-term auto-correlation. 

The third peak (the largest non-zero offset peak) from the origin represents the 

fundamental period. 

(Taken from Hess, 1983). 



Figure 4.19 Function used to centre-clip speech. 

(Taken from Rabiner & Schafer, 1978). 

INPUT SPEECH 

CENTER CLIPPED SPEECH 

Figure 4.20 Effect of centre clipping on a simplified speech waveform. 

(Taken from Sondhi, 1968). 



Figure 4.21 Block diagram of the SIFT algorithm. 

Firstly, the input is low-pass filtered and decimated. An LPC inverse filter is then used 

to simplify the input speech. Autocorrelation is then used to determine the fundamental 

period value and interpolation is used to increase the resolution of the estimate. 

(Taken from Rabiner & Schafer, 1978; After Markel, 1972). 
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Figure 4.22 Example of the spectral compnssion to estimate fundamental frequency. 

A series of log harmonic product spectra are shown in a) and their harmonic product 

spectra are shown in b). 

(Taken from Noll, 1970) 



Figure 4.23 Logarithmic power spectrum of voiced speech and its corresponding 

cepstrum. 

Trace a) show the log power spectrum exhibiting cosine-like ripples due to the excitation 

harmonics. The overall spectral shape is due to effect of the vocal tract resonances. 

The cepstrum is shown in b). There is a well defined principle peak corresponding to 

the fundamental period. 

(Taken from Noll, 1967) 
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Figure 4.24 Block diagram of the cepstrum algorithm. 

This involves dividing the input up into frames, calculating the log power spectrum for 

each frame and then calculating the inverse Fourier transform of the log power 

spectrum. The peak in the cepstrum is then located which the fundamental frequency 

estimate in that frame. 

(Taken from Noll, 1967). 



CHAPTER 5: FUNDAMENTAL PERIOD ESTIMATION USING THE 

LARYNGOGRAPH 

5.1.1 Introduction 

The fundamental period epoch markers used in this thesis for the training and testing of 

the MLP-Tx algorithm were obtained using a system that uses the laryngograph signal 

(Lx). This involved two separate algorithms that were implemented in software as two 

different programs. The first consisted of an initial automatic analysis that generated a 

first approximation to the period markers. The second was an interactive program which 

provided the user a means to alter and correct the first set of period markers. Full 

operational details for both of these programs are provided in appendix A.2. 

5.1.2 Automatic reference fundamental period estimation 

The automatic reference fundamental period estimation algorithm defines the output in 

terms of the point of maximum positive gradient in the laryngograph waveform. It is 

acknowledged that this point corresponds to the point of closure of the vocal folds and 

in addition this point is more uniquely defined in each laryngograph cycle than other 

features such as the cycle maximum and minimum (Hess & Indefry, 1984). Figure 5.1 

shows a typical example of the laryngograph signal and its corresponding differentiated 

signal. There are occasions when the differentiated signal is not well defined, as 

illustrated in figure 5.2. It is very important that the period marker values estimated by 

the reference algorithm are accurate reflection of the true period marker values for the 

speech. In addition, it is important that there are as few false period markers and 

missing period markers as possible. The algorithm used to automatically determine 

closures constitutes a simple expert system which then checks the validity of the initial 

estimates. The proximity of a period marker to adjacent markers is tested. In addition, 

a valid period marker can only occur after a local minimum in the laryngograph 

waveform, and before a local maximum. Another program was also written to permit 

manual checking of the automatic period marker labelling and permit changes to be 

made if necessary. The various processing stages of the first program are now described 



in detail. A flow-chart for this program is shown in figure 5.3. 

Stage 1: 

The laryngograph signal is read in from a SFS file (Huckvale et al., 1988) and then 

bandpass filtered between 40Hz and 3kHz with a 251 point linear phase FIR filter, and 

the time-offset associated with it then corrected. This removes unwanted low frequency 

noise from the signal as well as high frequency noise. 

Stage 2: 

The bandpass filtered laryngograph signal is then differentiated. The laryngograph 

signal is then tested for correct polarity by separately summing the values of all the 

positive and negative peaks in the differentiated laryngograph signal. If the sum of 

positive peaks exceeds the sum of negative peaks, then the laryngograph wavefonn is 

assumed to be of correct polarity; otherwise it is inverted. The correct polarity bandpass 

filtered signal and the differentiated signal are then retained for future analysis. In 

addition, both these signals are written back to the SFS file to enable further analysis 

using an interactive program at a later stage. 

Stage 3: 

It has been observed that there is a tendency for the laryngograph waveform to die away 

rapidly towards the end of voiced segments (See chapter 2). Under these circumstances, 

it is very difficult to detect the excitation points, because the peaks in the differentiated 

laryngograph signal become very small and comparable in size to the background noise. 

As a consequence to this, the threshold that best detects the period markers is as low as 

the background noise on the laryngograph waveform will permit. Therefore, it is the 

characteristics of the noise that essentially determine the threshold. 

The level of the background noise in the differentiated laryngograph signal is estimated 

by consideration of voicing-free regions of the laryngograph signal that have been 

previously labelled by hand. The mean h,, and standard deviation G,,, of the 

instantaneous amplitudes of the differentiated laryngograph signal within the no-voicing 

regions are then estimated, giving a simple statistical description of the background 



noise for the no-voicing conditions. 

The use of the mean and the standard deviation is based upon the assumption that the 

noise is Gaussian and white. In this case, one can calculate the probability that the 

signal will exceed a given value in terms of the signal mean and standard deviation. 

The probability that the noise will exceed a given threshold corresponds to the area 

under the Gaussian curve for values greater than the threshold. Ideally it is required that 

the threshold used should give no false To markers within the voice-free region. If we 

specify that we want no more than one false period marker in 20 seconds of speech (a 

typical length for a sentence) this leads to one error out of l6OOW samples (using an 

8kHz sampling rate). This correspond to a probability of error of around 1U5. Writing 

the threshold as 

threshold = Aodlx + pdlx 

Then the probability of an error is given by P,, where 

Where erfc(x) is the complementary error function for X. For a value of P, of I O - ~  this 

leads to a value of A of around 4. 

Stage 4: 

The generalized maxima that exceed the threshold value and occur more than a pre- 

defined minimum period value (+0.5ms) from other maxima are then calculated. This 

avoids the detection of multiple period markers around the point of maximum gradient 

that can otherwise occur if the signal is very noisy. This puts a limit on the maximum 

operating frequency of 500Hz, which is sufficient for the current application. If the 

threshold has been well chosen by the previous stage of processing, the generalized 

maxima will constitute the final period markers, with only a few exceptions. 

Stage 5: 



A potential period marker is then rejected if it does not have a local minimum (within 

20x11s) in the laryngograph waveform preceding it and a local maximum in the 

laryngograph signal following it. If more than one marker shares the same maximum 

and minimum in a laryngograph cycle, only the period markers with the largest local 

maximum in the differentiated laryngograph waveform is retained. 

Stage 6: 

Potential period markers are also rejected if they are separated from other period 

markers by a predetermined range of 20ms or more. This has the effect of removing 

any spurious period markers. It also limits the lowest operating frequency to 50Hz, 

which is again sufficient for the current application. 

stage 7: 

The period marker values are finally written out to another item in the SFS file. 

5.1.3 Interactive fundamental period estimation algorithm 

An additional interactive program provides a means to hand-correct regions of speech 

and laryngograph erroneously labelled with fundamental period markers by the automatic 

period estimation program. It also provides the means to label sections of speech as 

ambiguous, so that they can be ignored and not be used for training and testing of the 

MLP-Tx algorithm. This latter point is important, because occasionally there are regions 

of speech and laryngograph signals which are difficult to interpret, and it is consequently 

better to exclude them from future analysis rather than permit the possibility of using 

falsely labelled speech data. To deal with these discrepancies, there is an option on the 

interactive laryngograph analysis program to permit the user label certain regions as 

"rejected" so that later they will not be used for training the MLP-Tx algorithm or in 

performance evaluation tests. Figure 5.4 shows a typical operating window seen by the 

user whilst using the program. 

The program operates by displaying the speech pressure waveform, the bandpass filtered 

laryngograph waveform, the differentiated laryngograph waveform, and the preliminary 



estimate of the period markers generated by the automatic analysis program. In addition 

there is another trace representing the output from the interactive program, which 

consists of a set of period markers that are initialized from the automatic analysis 

program. The program lets the operator m m  in and examine the waveforms in the 

required detail. In addition, the user may select a new threshold on the differentiated 

laryngograph waveform, and re-run the analysis over the selected region. In this way, 

period markers may be added or removed as desired. 



Figure 5.1 Laryngograph waveform exhibiting single well-defined peak differential per 

excitation period. 

The speech pressure waveform, corresponding laryngograph and differentiated 

laryngograph waveforms are shown. The utterance is the vowel /id spoken by a male 

subject. 



Figure 5.2 Laryngograph waveform exhibiting poorly defined peak differential per 

excitation period. 

The speech pressure waveform, corresponding laryngograph and differentiated 

laryngograph waveforms are shown. The utterance is the vowel /id spoken by a male 

subject. 
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Figure 5.3 Flow-chart of the operation of the automatic fundamental period estimation 

program. 

This program (lxtx) was used to automatically determined the period markers on the 

basis of the laryngograph waveform. 
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Figure 5.4 Typical operator's view using the interactive period marker estimation 

program (lxia). 

The top trace shows the speech waveform. Below it are the band-pass filtered and 

differentiated laryngograph waveforms. Next are the period markers from the automatic 

analysis, followed by the period markers from the present analysis. In the bottom of 

trace the rejection annotation labels are displayed, which can be set to label certain 

regions of the signal unreliable and not suitable for future analysis. The utterance is the 

end of /agrt/ spoken by a male subject. 



CHAPTER 6: TECHNIQUES FOR COMPARING FUNDAMENTAL 

FREQUENCY/PERTOD ESTIMATION ALGORITHMS 

6.1 INTRODUCTION 

6.1.1 Organization of this chapter 

This chapter investigates some established techniques for evaluating fundamental period 

and frequency estimation algorithms. Some of the standard approaches to the evaluation 

of fundamental frequency algorithms are discussed. The implementation of some 

frequency contour comparisons are then described in detail. Two newly developed 

measurements specifically for the comparison of period-by-period (time-domain) 

algorithms are then introduced and details of their practical implementation are 

described. Finally, some difficulties in making comparisons are considered. 

6.1.2 The need for quantitative comparisons of performance 

To assess the performance of any fundamental frequency or period estimation algorithm, 

it is necessary to have evaluation techniques. In general these involve some kind of 

comparison between the results from the test algorithm and those obtained from a 

reference algorithm that represents "ideal" performance, or is an accepted standard. 

It is desirable to be able to quantify the performance of an algorithm for several reasons. 

Firstly, one often wishes to know how well a new technique compares with established 

techniques, over a given range of conditions. Without this information, there is no way 

of knowing whether or not a new algorithm is of practical value. 

Secondly, evaluation techniques provide the means to test modifications to an algorithm. 

If the performance of an algorithm can be estimated, the effect that alterations of 

parameters have on its performance can be monitored. 

Although the assessment of fundamental frequency and fundamental period estimation 



algorithms is an important issue, little work has been reported on quantitative 

comparisons in the literature. The best known study to compare speech fundamental 

frequency algorithms is due to Rabiner et al. (1976). Evaluations were also made by 

Reddy (1967), Tucker & Bates (1978), Friedman (1979) and Howard el al. (1986). A 

subjective study was carried out by McGonegal et al., (1977) which involved perceptual 

assessment of speech re-synthesised from the estimated frequency contours. 

6.13 Fundamental frequency and fundamental period comparisons 

There is a basic difference in format between fundamental frequency estimates and 

fundamental period estimates. Fundamental frequency estimates typically constitute a 

set of frequency values at regular time intervals, determined by the frame-rate of the 

algorithm. Fundamental period estimates typically consist of a sequence of time values 

corresponding to the location in time of successive period markers. If comparisons are 

made directly on such estimates, it is clear that different techniques will be required in 

the two cases. 

In chapters 3 and 4 it was explained that fundamental period estimation provides a more 

complete description of vocal fold vibration than the sampled fundamental frequency, 

because the former has the capability to retain period-by-period irregularities. Similarly, 

direct comparisons on period markers are desirable because they can operate on a 

marker-by-marker basis. 

Of course, it is always possible to estimate the frequency contour associated with a 

sequence of fundamental period markers. However, such a conversion discards the 

timing information concerning precise marker location in each speech cycle (which is 

important when the markers are used for period synchronous analysis; see chapters 3 and 

4). In addition, the conversion procedure may smear the effect of irregularities in the 

excitation, especially if the frequency contour is smoothed before sampling at the desired 

frame rate (which is of course necessary to prevent aliasing of the contour). 

6.2 ESTABLISHED COMPARISON TECHNIQUES 



6.2.1 Frequency contours 

A frequency contour is simply a plot of the estimated fundamental frequency against 

time. A logarithmic frequency scale is often used, because it better reflects the 

perceptual importance of frequency changes. In this thesis, the frequency estimates are 

plotted using a sampling rate around 1 0  Hz. Some examples of frequency contours are 

shown in figure 8.1 1. 

If the frequency values are derived from period values, the frequency point can be 

plotted synchronously with these period values. However, if frame-by-frame 

comparisons are to be made, it is necessary that both contours are defined at the same 

frame rate, so this approach cannot in general be adopted. 

6.2.2 Visual comparison of frequency contours 

Perhaps the simplest and most widely used technique for speech fundamental frequency 

estimators involves the visual inspection of the frequency contour. The contour can 

provide useful insight into the operation of the algorithm. If the frequency contour is 

displayed together with other information, such as the speech pressure waveform, the 

output of a laryngograph, or a reference frequency contour, the basic operation of the 

algorithm can be quickly assessed. Gross errors and voicing determination failure show 

up quite well. However, errors due to small differences between contours are more 

difficult to judge. 

6.2.3 Frequency histograms 

Another simple technique for presenting the results from an algorithm involves the 

generation of histograms of the frequency values (the reciprocal of the fundamental 

periods). Abberton, Howard & Fourcin, (1989) used 128 bins in  the histogram 

organized on a logarithmic frequency scale covering the range of 30 - 1000 Hz. Again 

one may visually compare results obtained for the reference and test algorithms. These 

plots are given the name Dx at UCL. Frequency histograms are shown in appendix A.8 



In addition to visually assessing the form of the frequency histograms, it is also 

sometimes useful to calculate the mean, mode and median frequency values in the 

associated data. 

6.2.4 Problems with subjective measurements 

The visual assessment of frequency contours is subjective. That is, i t  depends upon the 

opinion of an observer, and different observers can give different results. This is clearly 

undesirable, because it introduces uncertainty and bias, and makes the results difficult 

to repeat. In addition, although it may be possible to rank a set of results from 

different algorithms, i t  much more difficult to come up with an absolute performance 

figure for a given result. 

Another problem with subjective comparisons is that they are not automatic, and may 

require a large amount of human observation time. Automatic assessment is more 

desirable because it reduces the human effort, making it possible to run very large 

comparison experiments that simply would not be practical otherwise. 

Therefore, rather than use subjective comparisons, i t  is better to precisely define a set 

of measurements in terms of mathematical operations on the estimates. This requires 

that the measurements really do relate to the important aspects of algorithm 

performance, which will be different for different applications. For example, in a lip- 

reading task supplemented by real-time speech period estimation from a set of different 

algorithms, Rosen et al. (1982) found that the inherent time-delay due the algorithms 

was a dominant factor in their performance ranking. 

6.2.5 Quantitative comparison of frequency contours 

Rabiner et al. (1976) defined four types of errors that can occur. These are also 

illustrated in figure 6.1 (the gross error criterion is discussed in the next section). 

Gross and fine errors 



1) Gross frequency errors. These are due to dramatic failures of the algorithm, and can 

include instances in which the frequency values obtained fall outside the normal range 

of values that occur in speech. 

2) Fine frequency errors. These constitute small deviations of the frequency estimates 

from their true values. 

3) Voiced-to-unvoiced errors. These occur when the test algorithm fails to generate an 

output to signify that the input speech was voiced when it was voiced. 

4) Unvoiced-to-voiced errors. These occur when the test algorithm indicated that the 

input speech is voiced when in fact it was not voiced. 

The last two types constitute errors in the determination of voicing of the speech signal 

which may be important if the fundamental frequency algorithm is providing information 

needed to distinguish voiced from voiceless sound, as in the case of the EPI signal 

processing hearing aid. 

Rabiner et al. defined a frame-by-frame error as the difference in frequency between the 

frame value from the test algorithm and the frame value from the reference algorithm, 

for those frames in which both algorithms indicate voicing is present. Thus 

where Fm(n) is the error in frequency at frame n between the value of test frequency 

contour F,(n) at frame n and the value of the reference contour F,(n) at frame n. F,(n) 

= 0 is the conditions for unvoiced speech. If the value of F,,(n) exceeds a given 

bound, then the error at frame n is considered to constitute a gross error. Rabiner el al. 

(1976) used the criterion whereby a gross error constituted a difference of greater than 

lms between the test and reference fundamental period estimates. Tucker & Bates 

(1978) defined a gross error as one in which the difference exceeded 10%, Reddy (1967) 

used a 12.5% difference and Friedrnan (1979) used a 25% difference. In this thesis, a 



difference of greater than 10% was considered to constitute a gross error, because it 

corresponds better to the logarithmic scale used to represent frequency contours. 

If the value of F-(n) is less than this bound, then it is considered to constitute a fine 

error (frames with a zero Fm(n) value are also classified as fine errors). The mean and 

standard deviation of the fine errors are then calculated and this gives an indication of 

the accuracy with which the test algorithm generated its frequency estimates. 

Reddy (1966) used the terms hops, holes and chirps to describe a time-domain algorithm 

misplacing, missing or adding an additional marker in its estimates of speech 

fundamental period. A further classification of gross errors that is used in this thesis is 

based on the last two descriptions. A "chirp" error is defined to be a gross error in 

which the test frequency value exceeds the reference value by more than the preset 

amount, and a "drop" error is a gross error in which the test algorithm gives a frequency 

falling below the value of the reference by more than a preset amount. This sub- 

classification of gross error provides more information to the nature of the performance 

of the test algorithm. 

Voicing transitions errors 

In addition to determining distances between the frequency contours, Rabiner el al. also 

define unvoiced-to-voiced errors whenever 

F,(n) is equal to 0 and F,(n) is not equal to 0 

That is, when the test algorithm indicates voicing but the reference does not, there is an 

unvoiced to voiced error. Similarly, voiced to unvoiced errors occur whenever 

F,(n) is not equal to 0 and F,(n) is equal to 0 

That is, when the test algorithm indicates no voicing, but the reference indicates voicing, 

there is an voiced to unvoiced error (such measures are also of value in the evaluation 



of voiced/voiceless detectors). 

6.2.6 Implementation of frequency contour comparisons 

A set of frequency contour comparison metrics were implemented by the author. The 

use of this program and the output generated is given in appendix A. 10. The details of 

the comparisons implemented are now explained. 

Check frame rates 

The first stage in the comparison is to check that the two frequency contours are 

specified at the same frame-rates. Naturally one cannot make comparisons if the two 

sets of frequency values are not defined at the same points in time. A standard rate of 

lOOHz was used for all the comparisons in this thesis. 

Estimate time difference between test and reference contours 

Secondly, the time-delay between the reference and the test frequency contours must be 

known. It makes no sense to compare frames if they correspond to different times of 

the input speech. If the time delay is known a priori, it can simply be entered directly 

to align the two contours. If not, then it must be calculated. To perform this task, the 

standard deviation of the values corresponding to the differences between two frequency 

contours is calculated over a range of delays (i500rns was used). The minimum point 

in this time function is then located, which usually corresponds to the best time 

alignment of the two contours. This time function for a 20 second piece of evaluation 

data is shown in figure 6.2. The minimum is typically well defined. This procedure can 

reliably align the test and reference contours, unless the test contour contains a large 

number of gross errors, or the search range used is too large. To be sure that the time 

alignment was always correct, the time alignment for all the data files known to have 

the same delay were examined. The modal value of the delay was then used to re-align 

the test and reference data in those few cases in which the algorithm had failed. 



Calculation of errors in voicing determination 

Since a voiced- to-unvoiced error occurs whenever the test frequency con tour indicated 

the absence of voicing and the reference indicated voicing, the maximum number of 

such errors is equal to the number of voiced frames in the reference frequency contour. 

Hence the voiced-to-unvoiced errors were expressed as a percentage of the voiced 

frames in the reference frequency contour. 

Since a unvoiced-to-voiced error occurs whenever the test frequency contour indicated 

voicing and the reference indicated the absence of voicing, the maximum number of 

such errors is equal to the number of unvoiced frames in the reference frequency 

contour. Therefore the unvoiced-to-voiced errors were expressed as a percentage of the 

unvoiced frames in the reference frequency contour, 

Calculation of gross errors 

A gross error occurs whenever both the reference and test frequency contours indicated 

voicing, and the frequency value of the test frequency contour deviates by more than 

k10% of the frequency value of the reference frequency contour. These errors were then 

expressed as a percentage of the number of frames in the test and reference frequency 

contours that were both voiced at the same time. It was a trivial task then to classify 

the gross errors into those in which the test value is greater than the reference value and 

those that are less than the reference value. This then gives an indication to whether the 

errors are 'chirps', which occur when there is a local false rise in frequency, or 'drops', 

which occur when there is a local false drop in frequency. 

Calculation of fine error statistics 

A fine error occurs whenever both the reference and test frequency contours indicated 

voicing, and the test frequency contour deviates by less that k10% from the reference 

frequency contour. These errors were then expressed as a percentage of the number of 

frames in the test and reference frequency contours that were both voiced at the same 



time. The mean and standard deviation of the fine errors were then calculated. 

Calculation of contour statistics with respect to different labels 

The reference frequency contour used for the comparisons could also be annotated with 

labels to indicate the different sound types, or its local reliability. These annotation 

labels could then be used by the comparison program so that the metrics described 

above could be calculated for each label class. In this way it is possible to determine 

the performance of the test frequency contour with respect to different types of input 

sounds. More importantly, this facility was used with labels that indicated when the 

reference frequency contour was reliably defined, so that meaningful statistics could be 

generated. 

6.3 NEW COMPARISON TECHNIQUES 

6.3.1 Advantage of period marker comparisons 

Since the work in this thesis was mainly concerned with speech fundamental period 

estimation, it was felt worthwhile to consider comparison techniques that could be 

specifically used for this type of fundamental period determination algorithm. 

There is advantage to be gained from making comparisons directly on the period 

markers, because the process of converting the period markers to a fixed rate frequency 

contour inevitably loses information concerning the speech excitation. In particular, 

comparisons in terms of the period markers can give information concerning the absolute 

location of the excitation point in a speech cycle. This information will not be present 

in a frequency contour sampled at a fixed rate. Also, the conversion of the period 

markers to frequency values loses information concerning the type of errors that 

occurred in the fundamental period estimation algorithm. For example, if an extra 

period marker is inserted, this constitutes a fundamental period chirp error. However, 

after converting the period markers to a frequency contour, the effect of a single period 

marker insertion may well be smeared out by any smoothing process that is employed 



over the given frequency frame and the insertion error may only appear as a fine error 

in the frequency contour comparison (although this depends on the averaging window 

size and the definition of a gross error). 

6.3.2 Period marker comparison metrics 

Given a set of test fundamental period markers and a set of reference fundamental 

period markers for the same piece of input speech, we wish to quantify the difference 

between them. To be more specific, one wishes to know whether the correct number 

of test period markers are present and located accurately. This calculation is not easy 

to perform directly, as was in the case of frequency contours, because the two sets of 

period markers are not generally defined at the same points in time. In addition, there 

will also in general be a gross time difference between the test and reference period 

markers. The required measurements between a set of reference period markers and test 

period markers are illustrated in figure 6.3. 

Hits, misses and false alarms 

The period marker comparisons used in this thesis operate by firstly finding the 

correspondence (if any) of a reference period marker to a test period marker. That is 

to say, for a given period marker in the reference set, the period marker in the test set 

that corresponds to the same speech excitation is determined (the procedure to perform 

this operation in explained shortly). After this operation has been carried out, it is then 

possible to say whether or not there is a test period marker that corresponds to a given 

reference period marker. If there is, this constitutes a 'hit' and if there is not, then this 

constitutes a 'miss'. For all the 'hits', it is then possible to calculate the deviation (in 

time) between the given reference period marker and its corresponding test period 

marker. This 'jitter' is a measure of the location accuracy of the test period marker, and 

for a given piece of speech, the mean and standard deviation can be calculated to give 

an indication of overall test period marker location accuracy. 

Absolute marker jitter and period jitter 



In addition to this 'absolute time difference jitter' between the test and reference period 

markers, it is also possible to calculate the difference between the local period values 

as determined from the test and reference data sets. This measure has the advantage that 

it cancels out any slowly varying time shift between the reference and test period 

markers that would show up in absolute time jitter measurements. Such an effect will 

occur when a speaker is moving his head relative to a microphone whilst using the 

laryngograph to generate the reference period markers. This will interfere with the 

absolute measurements, but not affect the period difference measurements. It is often 

the time difference between successive period markers that is required of a fundamental 

period estimation algorithm, rather than the absolute time locations, because it is this 

that relates to the fundamental frequency. 

6.3.3 Dynamic programming alignment of test and reference period markers 

Comparisons between the test and reference period markers rely on being able to 

determine the correspondence between a period marker in the reference set and the test 

set. As mentioned briefly before, there will often be an overall time-shift between the 

test and reference period markers, arising from the different operation lags between 

different algorithms. In addition, test pulses may be missing in certain locations and 

present in others. Even when the test pulses are present, they will not always occur at 

exactly the same time as the corresponding reference period markers. There will also 

often be false pulses in the test period marker set. Clearly an algorithm that is to find 

the correspondence between the two sets of markers must be robust enough to take all 

of these difficulties into account. 

Constant time shift alignment 

Before discussing the full alignment problem, let us briefly consider what one would do 

in the case of two sets of markers between which there was only an single overall time- 

shift. The simplest operation that would indicate the lag between the two sets of 

markers would be the cross-correlation function. That is, the point of maximum 

coincidence as a function of time lag between the two sets of markers could be used to 



identify the time lag. In the case of period markers, which can be represented in time 

as a sequence of impulses, the multiplications in the cross-conelation can be replaced 

by a logical AND function. It will be appreciated that if there is only a constant offset 

between the two sets of markers, after the alignment has been performed, all 'hits' will 

align completely between the two sets of period markers, and so they can be identified 

by processing the list reference period markers and looking for a test period marker at 

exactly the same time location. The cross-correlation function for two sets of period 

markers for a 20 second piece of speech is shown in figure 6.4. 

Dynamic time-warping alignment 

The same basic principle can be extended using dynamic programming to find the 

correspondence between the reference and the test period markers, when each test 

marker is independently shifted in time from the reference period marker location. 

Initially the best constant delay alignment is performed. Then each period marker in the 

reference set is individually correlated (or rather ANDED) with the test period markers 

over a suitable range around its original location of _+lOms, and the coincidences 

recorded whenever they occur. This is illustrated in stage 1 of figure 6.5. This process 

results in a matrix; for each reference period marker the coincidence of test period 

markers is given for a range of lags. The next stage of operation involved finding the 

best 'path' through this matrix, using a dynamic programming procedure. This is 

illustrated in stage 2 of figure 6.5. The optimum path is defined as that which 

minimized deviation and maximizes the number of 'hits' that are detected. Figures 6.6 

and 6.7 show the time warp path found for some real data. 

After the non-constant alignment has been carried out, the 'hits' are then identified. The 

jitter between absolute marker locations is then determined, which corresponds to the 

deviation at which a given 'hit' occurred. 

The false alarms are then identified. A distinction is made between those which occur 

outside voicing regions and those which occur within voicing regions. In this case, a 

voicing region is defined as a region within 20ms of any reference period marker. It 



is believed that this classification of false alarms is valuable, because the false alarms 

during voicing often correspond to chirp errors. 

The number of misses is also computed, and this is simply the difference between the 

number of reference pulses and the number of hits. 

6.4 PROBLEM ARISING WITH COMPARISONS 

6.4.1 The basic problem 

To make valuable comparisons between different algorithms, it is important to bear in 

mind that the metrics that we have discussed so far constitute a set of interdependent 

measurements relating to the performance of a algorithm. For example, in the case of 

the frequency contour comparisons, to give an overall rating of a particular algorithm 

involves consideration of its voicing determination performance as well as the gross 

errors and fine errors it generates. If the criterion of detection of voicing for an 

algorithm is altered, the relationship between the hits and false a l m s  changes. In 

addition, the number of gross errors and the statistics for the fine errors may change. 

Therefore, for a given algorithm, a different set of numbers (for voicing errors, unvoiced 

errors, gross errors, etc) may be generated depending upon the setting of the voicing 

detection threshold. In the evaluation of such an algorithm, we are interested in its 

inherent performance, not its performance for an arbitrary threshold value. One solution 

to this problem is to set the threshold for all algorithms (whenever possible) to give 

similar voicing errors. This is now discussed in somewhat more detail. 

6.4.2 Relationship between hits and false alarms 

As in the case of any detection system, there is a compromise between the number of 

'hits' and 'false alarms' made by a fundamental period estimation system. To appreciate 

this point, consider a fundamental period estimation system which is essentially 

composed an epoch detector followed by a comparator (for example the MLP-Tx 



algorithm, as explained in chapters 8 & 9). The output from the first stage is a multi- 

level time-waveform, and it is the task of the comparator to convert this into a time 

value that indicates the location of the local peak of the time waveform, provided it is 

greater than a pre-set threshold value. Therefore, the comparator must distinguish inputs 

that are greater or less than a preset threshold. 

The magnitude of the output from the pattern processor is related to the similarity of the 

input to a speech excitation candidate. In cases where there is a well defined excitation 

in the input speech, there will be a well defined response from the pattern processor. 

This is illustrated in the numerous plots of MLP output waveforms (for example, see 

figure 10.1). However, there will be occasions when the excitations are not so well 

defined (for example, figure 10.6). For example, the amplitude of the speech may be 

very low. Thus there will be situations where there is only a small output from the 

pattern processor, as opposed to a well defined output. Conversely, when no input 

excitation presented to the system, and there is no input noise, the output from the 

pattern processor will be low. However, noise will inevitably be present, especially in 

r ed  operating conditions, and consequently sometimes there will be input noise that will 

result in an output pulses from the pattern processor. Therefore, the pattern processor 

output can be characterized by two conditional probability distributions: The output 

pulse height distribution conditional on there being an input excitation present, and an 

output pulse height distribution conditional on there being no input excitation present. 

The task of the comparator is then to divide this graph into peaks below and above the 

threshold. It is apparent that if there is any overlap between the two conditional 

distributions, then errors will inevitable be made in this process. Whether these errors 

are largely misses or false alarms depends upon the threshold. If a low threshold is used, 

then all the events will be detected, but many false alarms will also be made. If a harsh 

threshold is used, then few false alarms will be made, but many true events will be 

missed. 

6.4.3 Receiver operating characteristic (ROC) 

If one wishes to characterize the performance of the fundamental period estimation 



system, it must first be appreciated that the performance of the fundamental detection 

process depends on the pattern classification section, while the threshold in the 

comparator merely affects the trade off between the hits and false alarms. If a set of 

hits and false alarms are obtained by testing the system at a number of different 

thresholds, a plot of these points is known as the receiver operating characteristic for the 

detector, and it is the position of this curve that characterises the performance of the 

detector (Levine & Schefner, l98 1). 

A measurement used in this thesis to characterise ROCs is the equal error criterion, that 

is the equal error hit and false alarm rate. This corresponds to the percentage hit rate 

that occurs when there are as many misses as false alarms. 

As mentioned previously, a serious problem with comparisons between different 

algorithms is that they may operate at different points on their respective ROCs. That 

is to say, an algorithm may be set to respond to all excitations, and consequently 

generate many false alarms, whereas the others may give few false alarms, but miss 

many excitations as well. Consequently one cannot simply compare the hits and false 

alarm rates and decide which algorithm is best. 

One possible solution would be calculate the ROC for each algorithm, which would then 

enable a comparison of the 'quality of detectors' to be made. In order to do this, the 

hits versus false alarms for each device over a range of thresholds would have to be 

calculated. At best this would be computationally expensive. In some cases, it may not 

be possible. For example, in a piece of hardware, such a threshold may not be 

accessible. 

In some situations, it may not be necessary. For example, if one device gives a higher 

'hit' rate and a lower 'false alarm' rate, then it is the better detector, since both 

measures indicate more desirable performance. 

6.4.4 Setting 'hit' rate of test and reference algorithms to the same values 



If it is possible to adjust one of the devices or algorithms, then all that needs to be done 

is to set it such that it has the same hit rate (or false alarm rate) as the other device. 

The performance of the other measure then indicates which of the two incorporates a 

better detector. Unfortunately, this procedure would involve running one algorithm for 

a range of thresholds and finding the hits and false alarms for each run, and this is very 

time-consuming. 

6.4.5 Setting period marker count to the same as the reference period marker count 

Another less computationally intensive normalization is to set both algorithms to 

generate the same number of output period markers (given by the number in the 

reference algorithm). This does not require running the computationally intensive period 

marker comparison algorithms, and requires much less processing. This technique was 

adopted to normalise the different fundamental period estimation algorithms in the final 

testing experiments. 

It should be noted that some measures of algorithm performance are not directly affected 

by the operating point of the algorithm, because they scale with the number of detected 

excitation points. For example, the number of voiced false alarms is expressed as a 

percentage of the total detected period markers. Consequently, both are reduced by 

using a strict threshold. However, in most cases it is desirable to operate all algorithms 

at around the same percentage hit level. 
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Figure 6.1 Illustration of types of errors used to quantify a test frequency contour. 

Upper box: Comparison between two frequency contours showing examples of voiced- 

to-unvoiced errors and unvoiced-to-voiced errors. 

Lower box: Comparison between a test frequency contour and a reference contour to 

illustrate gross errors. Whenever the frequency values in the test contour deviates by 

more than 10% from those in the reference contours (a limit shown by the two sets of 

dotted contours) the= is a gross emor. In this examples, the gross errors exceed the 

reference values, and are consequently chirp errors. 
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Figure 6.2 Effect of relative time delay on standard deviation of the fine frequency 

differences. 

This function typically exhibits a well &fined minimum and provides a means to align 

the two contours. This result corresponds to a 12 second section of female speech. 
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Figure 6.3 Illustration of a required information from period marker comparisons. 

It is enlightening to know the number of hits, misses and false alarms generated by a 

test algorithm, and examples of these are shown. For the hits, the deviation between the 

test marker and reference marker gives an indication of the accuracy of the algorithm 

under evaluation. 



Figure 6.4 Plot of the cross-comlation between reference period markers and MLP-Tx 

test period markers. 

The reference markers were derived from the laryngograph. It can be seen that in this 

example (which is typical for the test markers generated from the MLP-Tx algorithm) 

the peak is well defined, and its location provides information relating to the overall 

constant time-shift between the test and reference markers. This result corresponds to 

a 15 second section of female speech. 
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Figure 6.5 Illustration of the operational stages in the fundamental period marker 

comparisons. 

Stage 1 involved determining the local coincidences of a period marker against test 

period markers. The results from this is shown in the fmt  matrix. The next stage 

involved finding the best path through the deviation matrix, so that it is possible to 

assign corresponding reference markers and test markers to each other. After this has 

been performed, the number of hits is simply given by counting the reference markers 

that have corresponding markers, and the false alarms are the test markers without a 

corresponding reference marker. The local time difference (the jitter) between the test 

and reference markers is the warp value associated with each hit. Results of these 

operations are illustrated in stage 3 of the figure. 



f i le=bbf .as1 speaker-Bill token=fall ing post stressed a?a 

Figure 6.6 Illustration of the time-warp path resulting from real period marker data. 

Traces A and B show the reference and test markers respectively. Trace C shows the 

warp between the markers. It is plotted so that the value of the warp between a 

reference and test marker is &fined from the last reference marker until the current 

marker. The speech in from a male subject. 
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Figure 6.7 A close-up of the time-warp path shown in figure 6.6 



CHAPTER 7: PATTERN RECOGNITION TECHNIQUES 

7.1 BASIC CONCEPTS IN PATI'ERN RECOGNITION 

7.1.1 Introduction 

This chapter gives a brief overview of pattern recognition. First some of the basic 

issues and definitions involved in the recognition of patterns by computer are discussed, 

and then some classical techniques are described. This is then followed by a discussion 

of the more recent field of artificial neural networks, leading up to a description of the 

multi-layer perceptron (Rumelhart et al., 1986). This is considered in detail, because it 

is the pattern recognition technique that is employed in this thesis. It was chosen 

because it has been shown to perform well in many problems, including many in speech 

analysis (Boulard & Wellekens, 1987; Peeling & Moore, 1986; Huang & Lippmann, 

1987; Elman & Zipser, 1987). 

7.1.2 Definition of a Pattern 

A pattern can be considered to be an ordered array of elements. It is typically generated 

as the result of the representation of a set of measurements or descriptions of an 

organized discrete phenomenon or event. Mathematically a pattern can be represented 

as a multi-dimensional vector with the components in the vector corresponding to the 

elements in the pattern. Pattern recognition is the process by which such vectors are 

classified into different categories. The system that performs this function is called a 

pattern classifier. 

7.1.3 Supervised and unsupervised pattern recognition 

Some of the basic issues in pattern recognition will now be considered in more detail. 

Pattern classifiers operate in two distinct modes, training (learning) mode and 

recognition mode (Tou & Gonzalez, 1974). 



In training mode, a set of patterns vectors are made available. The goal of the training 

is to determine a decision boundary that will indicate the class membership of pattern 

vectors. The use of training material that is representative of the task is important to 

achieve good performance of the final system. 

In recognition mode, an input vector is presented to this trained classifier and its output 

class is then estimated. 

Approaches to pattern recognition can be sub-divided into those which are supervised 

and those which are unsupervised, depending upon how their training is carried out. 

Supervised training involves the use of a "teacher" to indicate explicitly the class of the 

training examples. In unsupervised training, there is no teacher present, so there is no 

explicit way in which a classifier can know the class of a given input pattern. In this 

case, the classifier must apply some general principle to an input pattern, and group it 

with other input patterns with similar characteristics. The classifier typically adapts its 

response so that patterns that are similar become clustered together, whereas patterns 

that are grossly different f o m  separate clusters 

In this thesis supervised pattern recognition is used because of the need to train a 

classifier to detect a specific event, the occurrence of which can be precisely defined in 

advance on the training data. Therefore, we will mainly consider supervised rather than 

unsupervised techniques in the discussion in this chapter. 

7.1.4 Geometric interpretation of patterns and pattern recognition 

Some important aspects of pattern classification can be understood by viewing the 

problem in geometric terms. An input pattern vector can be considered to be a point 

in multi-dimensional Euclidean space, where the dimensionality is determined by the 

number of elements in the pattern vector. A pattern classifier can then be seen as a 

system that divides this input space into a given set of discrete regions, which 

correspond to different pattern categories. The surfaces that divide the points in this 

input space are known as decision surfaces. 



It is possible to represent the decision surfaces for a classifier in terms of a set of 

decision functions (G,(X)). These functions are typically defined such that for a data 

vector X of pattern class i; 

for all j = 1,2, ..., M pattern classes, where j is not equal to i. That is to say, for data 

vector X belonging to pattern class i, the decision function corresponding to class i has 

a value greater than all the other decision functions for all the other classes. 

The simplest type of classifier is one with only two classes. In the case of such a 

classifier, the inputs patterns are discriminable, provided that input vectors for the two 

different classes do not occupy the same regions in the input space. In the one- 

dimensional case, the two-classes are discriminable if their respective probability 

distributions do not overlap. If they do, then it will not always be possible to classify 

the input correctly. Even when the pattern classes are theoretically discriminable, in 

practice it may be difficult to generate the required decision functions to discriminate 

them. If the required decision boundaries are very complex and their description 

requires many parameters, a large amount of training examples and a large number of 

processing may be required in order to determine the decision boundaries. As is the 

case with estimation problems in general, the more degrees of freedom characterising 

a decision boundary, the more effort is required to determine it. 

7.1.5 Learning as functional approximation 

One can also view pattern recognition as a problem in functional approximation (Poggio 

& Girosi, 1990). In this case we wish to approximate and estimate the function or 

functions that define the decision boundaries. The training data constitutes a set of data 

points that provides the basis for this estimation. In this case, one wishes to fit a 

function to divide the input data points into the appropriate decision regions. 

Functional approximation using a look-up table 



Let us suppose we have a set of input values (the input pattern vectors) and 

corresponding output values (the output pattern classes) from a function that we wish 

to approximate. Perhaps the simplest way to represent a function using a computer is 

to record each input pattern and its associated output value in a look-up table. Indeed, 

this approach is often adopted for many simple tasks, especially if is necessary to have 

fast access to the results: such a look-up table can be used to give an input to output 

mapping without any arithmetic computation. 

Such a scheme works satisfactorily until a new input value is presented that does not 

exactly match any of the inputs present in the training data. This may be due to some 

kind of variability in the input measurement and corresponds to a location in the input 

space for which there was no training example. In this case, there are various courses 

of action that can be taken. For example, the look-up table could be searched to find 

the recorded input that best matches the new input, using a criterion of similarity such 

as Euclidean distance. This approach is precisely the one employed in classification 

using distance functions (Tou & Gonzalez, 1974). 

Another approach is not to use a look-up table at all, but rather to approximate the 

input-output relation using a mathematical function. In this case, the parameters of 

some pre-specified function (which can be linear in some circumstances) are estimated 

to provide the "best fit" to the data-points. In this case, providing that the function is 

smooth and continuous, values between data samples are still defined. As long as there 

are sufficient data points to define the function (that is to say, provided that the data 

points are not too sparse) the interpolated values of the function between data-points will 

also be appropriately defined. Any input values can then be mapped to a corresponding 

output value, whether or not they coincide with the original data points. 

It is the behaviour (due to interpolation) of a pattern classifier between the points 

defined by the training data that determines its generalization properties (Broomhead & 

Lowe, 1988). Such generalizations are only possible because the input vectors are not 

randomly related to their output class for most real-world problems, but are in fact 

structured. If they were random, and there would be no relationship between a pattern 



and its corresponding class. In this case one would indeed need to record each input 

pattern in a look-up table in order to determine the output class, since useful 

interpolation would not be possible. 

7.1.6 An example of a simple pattern recognition task 

The following example is designed to clarify some of the issues that have just been 

discussed. A group of people are described in terms of two quantities for each 

individual; weight x, and height X,. In this case we can define a pattern vector X, 

composed of the two measurements G, and X,; that is 

Let us suppose that we had these measurements from four people; two men and two 

women. Their weight and height measurements are given in the table below: 

Name Weight Height Sex 

John 150Kg 2.00m male 

Kevin 80Kg 1.80m male 

Jane 70Kg 1.75m female 

Maria @)Kg 1.70m female 

Then it is possible to write the pattern vector for each person as; 

Now consider the possibility of distinguishing the sex of a person from this group on 

the basis of these measurements. That is to say, given a pattern vector corresponding 

to one of these subject, is it possible to determine whether they are male or female. In 



general, one may expect women to be shorter and lighter than men. (NB: The purpose 

of this example is not to suggest that weight and height characterize a person's sex, but 

rather to demonstrate a simple pattern recognition task). 

If the pattern vectors are plotted on a graph where the axes correspond to weight and 

height respectively (see figure 7.1), it can be seen that the points corresponding to John 

and Kevin are distinct from those due to Jane and Maria. Therefore in this case, a line 

(one of many that will partition the space in this way) drawn across the graph as shown 

in the figure 7.1 can partition the pattern space into two regions; One corresponding to 

male and one corresponding to female. 

If we are now presented with another pattern vector for an unknown speaker, this gives 

us a mechanism whereby we can numerically evaluate their sex. For example, 

If this new point is plotted on the graph in figure 7.1, it can be see that lies in the 

region designated female. Therefore, on the basis of our part sets of measurements, we 

could deduce that it is plausible (although we cannot be absolutely sure) that the 

unknown speaker is female. This graph provides a means to distinguish between male 

and female subjects on the basis of their weight and height. If we so wished, it would 

be possible to characterise the decision line on the graph mathematically, using the 

equation for a straight line 

where in this case y would represent the parameter "weight", X would represent the 

parameter "height", and m and C are the gradient and intercept of the line respectively. 

The values of C and m define the decision function for the classification of the input 

patterns. That is 

if X, - mx, < C then X belongs to the class female; otherwise X belongs to the class 



male. 

Normally, one would not determine the decision boundary for a pattern classification 

task by hand, but employ an automatic technique, some of which are described in the 

next sections. Clearly in this simple example there were only a very limited number 

of training patterns (that is, only 4) and in practice one would require many more 

measurements to characterize a large population of subjects in order to be able to 

estimate a useful decision surface. Of course, it would not always be possible to 

determine the correct sex of a person on the basis of their weight and height, because 

there are tall heavy women and short light men. To avoid this source or error, more 

measurements could be added to the pattern vectors to represent other differences 

between men and women. 

7.1.7 Basic structure of a pattern recognition system 

A typical pattern recognition system involves three distinct operations: Signal 

measurement, signal pre-processing, and finally classification via the implementation of 

a decision function. A schematic diagram for a pattern classifier system is shown in 

figure 7.2. 

Measurement 

The frrst stage in a pattern processing system uses an appropriate transducer. It is the 

task of the transducer to measure the desired physical property and produce an output 

in the format required. The measurements that are made should be chosen to 

characterise adequately the phenomenon or object under investigation. If this is not the 

case, then a given pattern may appear similar to ones arising from different phenomena. 

It is not always obvious what the measurements should be or the format in which they 

should be presented to a pattern classifier. Unfortunately there is little theory available 

to assist with this task and the problem is generally left to the intuition of the designer 

(Tou & Gonzalez, 1974). A good solution in a particular cases often depends very 

much on the nature of the specific problem. 



After the initial raw measurements have been made, there is usually a pre-processing 

stage. Although the purposes of preprocessing are many-fold, it  has two main 

objectives; data reduction and emphasis of features. It is advantageous only to present 

information to the input of a classifier if it is useful in the specific discrimination task. 

Unnecessary information serves no useful purpose, but may greatly increase the 

dimensionality of the input vectors. This increases the amount of computation that the 

classifier is required to perform, and in addition may make training the classifier more 

difficult. 

It is desirable to do as much as possible of the overall transformation implemented by 

a complete pattern classifier in the initial stages, because this will result in a pattern 

recognition system that uses an adaptive pattern classifier (the part that is trained) stage 

of lower complexity than would otherwise have been the case. Consequently, such a 

system will be easier to train and once trained may be more efficient in  its operation. 

In this case, the pre-processing may also be thought of in terms of implementing feature 

detectors that respond to important structural relationships in the signal. The pre- 

processing employed will affect the generalization capabilities of the following classifier, 

and is the subject of much research (Pao, 1989; Giles & Maxwell, 1987). One 

approach, for example, that uses a fixed input transformation to increase the 

dimensionality of the input vectors so that is only needs a simple linear classifier is the 

method of Radial basis functions (Broomhead & Lowe, 1988). 

Determination of the decision function 

Decision functions can be selected in a number of different ways. Perhaps the most 

obvious approach is classification based on distance functions. This technique employs 

a measure of similarity between the input pattern and a set of example patterns (the 

prototypes) to decide which class the input should be in. In the case of classification 

using likelihood functions, they can be implemented using a-priori knowledge 

concerning the nature of the pattern distributions. The latest artificial neural network 



classifiers, which are (loosely) based on biological neural models, estimate the decision 

functions using iterative training procedures. Iteratively trainable classifier techniques 

have an advantage over statistical likelihood classifier schemes in that they do not make 

a-priori assumptions concerning the form of the probability distributions of the input 

patterns (Huang & Lippmann, 1987). The following sections explore some of these 

different approaches to pattern classification. 

7.2 CLASSIFICATION USING DISTANCE FUNCTIONS 

Classification using distance functions uses the similarity between patterns in terms of 

functions relating to their geometric proximity in the multi-dimensional vector space in 

which they are represented. 

7.2.1 Template matching; nearest neighbour pattern classification 

A simple approach using distance functions is that of template matching, which is also 

known as nearest neighbour classification (Nillson, 1965; Tou, 1969). During the 

training mode, an example of each class of pattern is recorded as a template. In 

recognition mode, an input pattern is compared against each template using a pre- 

defined distance similarity criterion. The class of the closest matching template (which 

is regarded as a prototype pattern for that class) is then assigned to the input data vector. 

One method that uses this approach employs classification based upon Euclidean 

distance functions. Expressed mathematically, consider the case where there are M 

pattern classes represented by the template patterns Z, Z, ..., Z,. The Euclidean distance 

between an input pattern X and the i, template pattern is given by 

Di = [(X - Zi)'.(X - &)]ln 

The class of the input pattern X is then assigned to class W, such that Di c Dj for all i 

and j, except when i = j. 

This technique is useful when the pattern classes have limited variability and form 



clusters. Problems with this approach arise when it is difficult to select a good 

representative pattern for each class. 

7.2.2 k-nearest neighbour pattern classifsation 

Such an approach can easily be extended to the k-nearest-neighbour algorithms by using 

more than one example of each pattern class (Nillson, 1965; Tou, 1969). If, instead of 

using the one nearest pattern to determine the class of the input patterns, the class of the 

k-nearest patterns is calculated, and then the class with the majority is selected, this 

results in the k-nearest-neighbour classifier. A problem with this type of classifier is 

that it sometimes requires very large amount of memory to store the prototype patterns 

and requires a large amount of computation to perform the recognition. 

7.2.3 Cluster seeking algorithms 

The identification of characteristic prototype patterns and clusters of patterns form a 

central issue in the classification of patterns using distance functions. The reason for 

finding clusters is to represent the decision function using fewer parameters that would 

be required by using the individual vectors directly. Consequently various techniques 

have been devised to estimate a set of prototype patterns, and these are based on pattern 

clustering. Unfortunately these procedures have an intrinsic tendency to operate in an 

ad hoc fashion and the classification performance which they provide depends to some 

extent on the particular problem being addressed. 

Although the measure of similarity most commonly used in pattern clustering techniques 

is Euclidean distance, it is also possible to use other metrics such as the Mahalanobis 

distance, which effectively warps the dimensions of the space depending on the 

statistical properties of the patterns (Tou & Gonzalez, 1974). The criterion for finding 

clusters may be heuristic or based on the optimization of some mathematical 

performance index. 

The heuristic approaches are based on intuition and experience and consist of a set of 



rules that exploit the chosen measure of similarity. It is usually necessary to set a 

threshold of acceptable similarity in these algorithms. 

A typical performance index that is often used makes use of the overall sum of the 

squared errors between the samples of a cluster domain and their corresponding mean. 

This results in the k-means clustering algorithm (MacQueen, 1967). This algorithm 

involves the following operations: 

Step l. K initial cluster centres Z,(1),z2(1), ... Zk(l), are selected arbitrarily. 

Step 2. At the kth iteration, distribute the samples { X ]  amongst the K cluster domains 

using the relationship 

X is a member of Sj(k) if IX - Z,(k)l < IX - Zi(k)l 

for all i = 1,2, ..., K such that i is not equal to j, where Sj(k) denotes the set of samples 

whose cluster centre is specified by Zj(k) (any ties are resolved arbitrarily). 

Step 3. Using results for step 2, new cluster centres Zj(k+l) for J = 1,2, ..., K are 

computed, such that the sum of the squared distances from all points in Sj(k) to the new 

cluster centre is minimized. That is, a new cluster centre is computed so that the 

performance index 

J, = C IX - zj(k+l)12 , for j = 1,2,..,K 

X member Sj(k) 

is minimized. The value of Zj(k+l) which minimizes Jj is the sample mean of Sj(k), 

which means that the new cluster centre is given by 

Zj(k+l) = l/Nj . C X, for J = 1,2 ,.., K 

X member Sj(k) 



where Nj is the number of samples in S,(k). 

Step 4. If Zj(k+l) = Zj(k) , for j = 1,2, ..., K, then the algorithm has converged and is 

therefore terminated, otherwise the operation loops back to step 2. 

In practical applications, the value of K that gives good results will have to be found 

by trial and error. After the clusters have been found, they can be used as the basis for 

the prototype patterns in a distance classifier, such as the k-nearest-neighbour algorithm. 

An example of an approach which is based on the use of in-built additional heuristic 

procedures is the Isodata algorithm (Ball & Hall, 1965). 

7.2.4 Unsupervised pattern recognition 

Cluster-seeking algorithms can also form the basis of unsupervised training schemes. 

This is because they self-organize so as to comply with some underlying principle, 

rather than by the minimization of an error resulting from a comparison with an 

explicitly defined target pattern class, which is the case in supervised training. In this 

case, different output classes can be thought of as being associated with different 

clusters. A fundamental problem with this approach is that, although classification of 

the input into some class may be possible, this may not be the class that is required for 

a particular application. Unsupervised pattern recognition is discussed again in the 

section of artificial neural networks (section 7.5.19). 

7.3 CLASSIFICATION USING LIKELIHOOD FUNCTIONS 

7.3.1 Introduction 

Instead of adopting an approach to pattern recognition based on distance functions, one 

may consider the task as a statistical decision problem (Blackwell & Girshick, 1954). 

In this case the task is to find, in a statistical sense, the function that leads to the 

optimal decision. This is achieved by specifying a loss for each possible decision made 



by the classifier. The task of the classifier is then, on the basis of the input data vector, 

to select the pattern class that results in the minimum overall estimated loss. 

Three important strategies employing this approach are Bayes', Minimax and Neyman- 

Pearson (Tou & Gonzalez, 1974). The only difference between the three is in the 

threshold criterion used in the decision process. We will only consider the Bayes' 

classifier, because it is the most widely used. 

7.3.2 Bayes' classifier 

In a Bayesian classifier, the threshold criterion is defined such that the classifier has the 

task of minimizing the total expected loss (Reza, 1961; Van Trees, 1968; Helstrom, 

1968; Tou & Gonzalez, 1974). Consider the case of a classifier with the following 

parameters : 

Wi is pattern class i. 

X is the data vector. 

The probability of pattern class Wi given data vector X is given by the conditional 

probability p(WiIX). 

The probability of the input data vector X given pattern class Wi is given by the 

conditional probability p(XIWi). 

The probability of the pattern class itself is given by p(W) and the probability of the 

data vector is given by p(X). 

If the classifier decides that the input vector X came from patten class Wj whereas it 

actually came from pattern class W,  then there is an associated loss given by Lij. This 

loss matrix must be defined in advance. Often a loss of 1 is assigned to an incorrect 

classification and a loss of 0 is assigned to a correct classification (Tou & Gonzalez, 

1974). If there are M classes from which the input vector X may have come, then the 



total expected loss incurred in assigning the data vector X to class Wj is given by the 

sum 

The term Rj is referred to as the conditional average risk or loss. We may use Bayes' 

theorem to change the form of the equation for the loss. Since 

In the selection of the most likely pattern class, we must choose the pattern class with 

the lowest associated loss. Since the l/p(X) is a common factor in the losses, the loss 

equation can be redefined as 

In the case of a two-class classifier (M = 2)' the two loss equations are 

Thus class 1 is assigned if Rl(X) < R2(X), and class 2 otherwise. In the multi-class 



cases, the procedure is illustrated in fig= 7.3. 

7.3.3 Bayes' classifier for Gaussian patterns 

An assumption that is often made is that the probability distributions of the pattern 

classes follow a Gaussian distribution (Anderson & Bahadur, 1962; Cooper, 1967; Duda 

& Hart, 1973; Tou & Gonzales, 1974). In this case the pattern classes need only be 

represented in terms of their mean vectors and covariance matrices. 

In this case the multivariate distribution is given by 

p(XIW,) = 1/((2x)* IC,I) exp[-1/2(X - MJ9Ci(X- M,)] 

where M, is the means vector and C, is the covariance matrix. It is convenient to take 

logs of the terms in the loss equations; this does not affect the comparisons but makes 

the calculation simpler. In this case 

&(X) = ln(p(W,)) - 1/21nlC,I - 1/2[(X - M,)'C,(X - M,)] 

where 4 represents a decision boundary. Again class 1 is assigned if d,(X) < &(X), and 

class 2 otherwise. The values of the mean vectors and covariance matrices are estimated 

from a set of training data. 

Often the assumption that the pattern classes are normally distributed is not valid. 

Under these circumstances, one may resort to a functional approximation to the 

probability distributions. However, it becomes more difficult to model the distributions 

as they become more complex. It then requires a large amount of training data in order 

to get a good estimate of the probability distributions. The Bayes' classifier was 

compared to the MLP in a voicing determination experiment that is reported in chapter 

8. 

7.4 BRIEF REVIEW OF ARTIFICIAL NEURAL NETWORKS 



7.4.1 Introduction 

Artificial neural networks (also known as connectionist models) are systems that were 

designed to mimic some of the organizational characteristics of biological networks of 

neurons in the nervous systems of animals. Many of these models arose out of a desire 

to explain observations made in the fields of psychology and neuro-biology (Lippmann, 

1987; Anderson & Rosenfeld, 1988; Widrow & Lehr, 1990). 

The type of problems that are best solved by the brain tend to be those that involve the 

satisfaction of a large number of weak constraints. These problems are difficult to solve 

using conventional algorithms running on digital computers despite being easily solved 

by the brain. An example of this is the recognition of noisy images. This task is 

relatively easy for a human to perform, but is difficult to achieve by computer. On the 

other hand, the types of processing that humans are poor at, such as unaided arithmetic 

operations, can be achieved relatively easily by computer. 

With the current revival of interest in neural networks, there is also interest in building 

efficient hardware implementations. As well as using traditional VLSI technology 

(Mead, 1989), other technologies are being explored, including the use of optical 

implementations (Farhat et al., 1985). 

7.4.2 Characteristics of biological neurons 

One feature of biological neural networks is their massive parallel use of very many 

similar basic computing units (the neurons). For example, in the human brain it is 

estimated that there are around 10'' neurons. These computing units are slow compared 

to their electronic counterparts (for example, transistors). However, at a system level 

within a brain this speed limitation is overcome by the co-ordination of very many such 

units operating in parallel. It is only recently that computers are being built that also 

exploit parallelism in their operation. 

A biological neuron functions as a complicated electro-chemical device. A neuron 



receives input from other neurons at special structures called synapses, and transmits to 

other neurons via output lines known as axons. A neuron in the cortex can have receive 

up to ld inputs and send output to a similar number of other neurons (Kandel & 

Schwartz, 1985). There are two basic kinds of input synapse; excitatory ones and 

inhibitory ones. If a neuron receives enough input via its different excitatory synapses, 

this causes the electric potential within the body of the neuron (the membrane potential) 

to rise above a threshold value, at which point there is a high probability that a pulse- 

like signal (known as the action potential) is generated and transmitted out from the 

body of the neuron along the axon to other neurons. Conversely, any inputs received 

on the inhibitory synapses reduce the likelihood of the generation of such an action 

potential. 

Biological neurons do not simply operate in a simple binary fashion, even though the 

action potential is a two-state pulse. The output response from a neuron is coded in 

terms of frequency of output pulses it generates, and this frequency relates to the 

membrane potential of the neuron averaged over time (which in turn is a function of the 

inputs to the neuron). Many artificial neurons mimic this graded response by using a 

continuous output function, although some simpler models assume binary computing 

units. 

7.4.3 Basic characteristics of artificial neural network models 

Most neural network models distinguish two phases of operation of the systems: learning 

and retrieval. These two phases correspond to the training and recognition modes 

attributed to classical pattern recognizers. In the learning phase the connection strengths 

in the network are modified such that the network changes its function so that it 

constitutes a better model of the required transformation. In the retrieval phase, a 

stimulus is presented to the network and this changes the internal activity of the network 

and gives rise to an output pattern. During this process, the connection strengths are not 

altered. Because of the complexity of the network connections, it is often difficult to 

analyze the function of the network. 



7.4.4 Comparison between traditional classifiers and artificial neural networks 

Traditional classification techniques usually operate serially, although many can be 

implemented using parallel computation. There are many similarities between classical 

and neural network classifiers. For example, the computational structure used by a 

linear perceptron classifier is the same as a Bayes' classifier with Gaussian patterns, for 

which the covariance matrices for each class are identical (Lippmann, 1987). However, 

the training in the two approaches differs, which results in different operational 

performances. As opposed to the Bayes' classifier, the perceptron makes no assumption 

about the a priori probabilities of the input patters and simply operates to correct errors. 

Consequently its operation tends to be more robust (Huang & Lippmann, 1987). Of 

course, neither are appropriate when the patterns are not linearly separable (that is, 

cannot be discriminated using a hyper-plane decision function that uses a linear 

combination of the input vector elements). 

7.4.5 Origins of artificial neural networks 

The ideas behind the field of neural networks are not new. Anderson et al. (1988) have 

pointed out that the elementary principle of association was appreciated over a hundred 

years ago by the psychologist William James (James, 1890). He stated this principle as 

"When two brain processes are active together or in immediate succession, one of them, 

on reoccurring tends to propagate its excitement into the other". This is almost a direct 

statement of the Hebb learning rule, which is discussed in a later section. In addition, 

James gave a summing rule for brain activity which can be related to a model of a 

neuron in which its activity is due to its inputs weighted by their connection strength, 

the values of which were previously determined by past correlations. This scheme is 

very similar to current neural network models which employ Hebbian learning and 

compute the linear sum of their synaptic inputs. 

7.4.6 Early models of the nervous system 

An attempt to understand the process of neural computation was undertaken in a paper 



by McCulloch and Pitts (1943). They made various assumptions about the operation of 

neurons. These McCulloch-Pitts neurons, as they became known, were binary devices 

(that is to say, their output could only be in one of two possible states). A neuron could 

receive input from either excitatory or inhibitory synapses. All the excitatory synaptic 

connections had an equal strength, and if the integrated activity over a time quantum 

was greater than a preset threshold, the neuron would fire, provided no inhibitory input 

was present. The time quantum for integration of the synaptic inputs was loosely based 

on the synaptic &lay that is observed in biological neurons. The authors proved that, 

using a network of such neural elements, it was possible to implement any finite logical 

expression. These results had much influence in the fields of neuroscience as well as 

in computer science (von Neumann, 1958). 

7.4.7 The Hebb learning rule 

The first explicit statement of a physiological learning rule for neural networks was 

given by Hebb (1949); "When an axon of a cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth process or metabolic 

change takes place in one or both cells such that A's efficiency, as one of the cells 

firing B, is increased". Hebb was also one of the first to refer to the term connectionism 

in the context of complex neural models. 

Because Hebb did not make a mathematical statement concerning his postulate, its 

definition is somewhat wider than may otherwise have been the case. Hebb also was 

well aware of the "distributed nature" of computation in the nervous system and that 

representations in a complex nervous system require the participation of many nerve 

cells. 

7.4.8 Early computer simulations of neural networks 

One of the earliest attempts to simulate the nervous system using a computer was carried 

out by Farley and Clark (1954). Slightly later Rochester et al. (1956) canied out work 

on the learning system proposed by Hebb (1949). One important result of this work was 



that it showed that a working simulation required a level of model detail that can easily 

be overlooked in qualitative discussions. Computer simulations proved themselves to 

be valuable techniques to test theories in a way that was not possible merely by analysis. 

They found by experimentation that the Hebb rule needed a normalization component 

to prevent synaptic weights from growing without bounds. They also found a fatigue 

factor necessary, whereby the firing of a cell reduces the probability of an immediate 

subsequent future firing. 

7.4.9 The perceptron 

The first precisely specified neural network was the perceptron (Rosenblatt, 1958). A 

number of different variants of perceptron were initially described. A perceptron is 

illustrated in figure 7.4. A "simple" perceptron was a three layer device, that employed 

a "winner-take-all" operation at its output. The basic architecture of such a "simple" 

perceptron consisted of a sensory surface (which is the input to the system) known as 

the "retina", which then connected to a second layer, known as the "association layer". 

The connections between these layers were local and random, and units in the 

association layer were known as A-units. A given A-unit only received input from a 

local area of the retina. The A-units in the association layer were connected in turn to 

R-units in a response layer. To prevent more than one response unit from becoming 

active at a given time, there were a set of inhibitory connections from each R-unit that 

inhibited all A-units in the association layer to which a given R-unit was not connected. 

Rosenblatt considered that computation in the brain should be regarded in terms of the 

association, discrimination and classification of stimuli, rather than the computation of 

logical functions. He felt that the latter was inappropriate in view of the randomness 

and noise present in the nervous system. The learning rules for the perceptron were 

mainly based on simple reinforcement. The simplest rule adopted a self-organizing 

principle, but "forced" learning (that is, supervised learning) was also mentioned. 

7.4.10 The Pandemonium model 



Another early parallel neural model was the Pandemonium model due to Selfridge 

(1958). This consisted of multiple independent sub-systems that simultaneously 

processed the input and responded appropriately when a feature specific to each sub- 

system was detected. Selfridge proposed the technique of "hill climbing" to adjust the 

connection strengths between units and the input, or units and the output. The idea 

behind this is as follows: The response of a given unit depends upon its connection 

strengths. If it was known to what input a given unit should to respond to, and to which 

ones it should not respond, the connections could be altered until the values that give 

the "optimum" performance were found (that is, the best with respect to some pre- 

defined criterion). One way to do this is to alter the connection strengths by a small 

amount in all directions and then choose the values that give the best improvement in 

performance. We could then repeat this process again and again, until a good solution 

had been found. This procedure is analogous to climbing a hill, where height of the 

ground relates to the performance of our system. Unfortunately if we adopt the policy 

of following the maximum local gradient, then whenever we reach the top of a hill 

where the gradient is zero, we stop moving. If we are interested in finding the highest 

point in the landscape, it can be seen that this approach can fail whenever there are 

small foot-hills around the main hill, because we can become trapped on a local hill. 

Similarly if we adopt this local search procedure, the optimization of the connection 

strength for the units can become trapped in local performance maxima. The essential 

point is that a local search does not generally find the global maxima (or minima) of a 

function, unless the function contains no local maxima. 

7.4.11 Widrow and Hoff learning rule 

The perceptron learning rule changed the synaptic strengths (weights) on the basis of 

whether or not a correct classification was made. One problem with such rules is that 

a large number of iterations are required before training is complete. A system that is 

related to the perceptron was proposed by Widrow & Hoff (1960). This was called an 

adaptive neuron (ADALINE) and it computed the sum of the inputs with their 

corresponding connections strengths, plus an additional bias term. If the sum was 

greater than zero the output was set high, whereas otherwise it was set low. 



Training is performed using a supervised training scheme which provides a target output 

of + l  or -1 as appropriate. The learning rule is different from the perceptron learning 

rule in that this time during training, an input pattern is presented and an error signal 

is computed, which corresponds to the difference between the output from the summing 

stage and the desired target output. The connection strengths of the neuron are again 

adjusted so that the error is minimized. Now because the error is minimized, the 

learning process still occurs even when the neuron correctly classifies the input; this is 

not the case with the perceptron. It is intuitively evident that by providing more 

information concerning the way in which the system fails, the faster should its 

performance improve. This is one reason that this type of neuron learns faster than the 

perceptron. In addition, in the case of input classes that are not linearly separable, the 

Widrow-Hoff rule converges to produce the best mean square fit, whereas in the case 

of the perceptron convergence procedure, the decision boundary may not converge, but 

rather oscillate continuously. Mainly because of its rigorous mathematical definition, 

the ADALINE became an established technique in adaptive signal processing. 

Learning in this type of neuron model actually operates by minimizing the square of the 

error. One can consider this error as a function of all the possible connection strengths 

for a given neuron. This leads to an error surface in weight space (as before with the 

pandemonium model). Again, we wish to find the "optimum" weights that give the 

overall global minimum error. If we use the hill-climbing approach and follow the path 

on minimum gradient, then we can only guarantee to find the global minimum only if 

there are no local minima. However, Widrow and Hoff showed that if we minimize the 

square error, the error surface (for a linear network) is a simple quadratic surface with 

only one global minimum. Consequently to find this point only requires that we follow 

the minimum gradient path which can be computed from the partial derivative of the 

error with respect to the weights. They also showed that this derivative is proportional 

to the error signal. This error correction routine is also known as the LMS (Least Mean 

Squares) algorithm. 

A development of the ADALINE model was the MADALINE model which consisted 

of multiple ADALINE elements (Widrow, 1962). This consisted of a set of ADALINE 



units connected to a fixed logic gate and this structure was only adaptive over the first 

layer. Another early neural model was Steinbuch's learning matrix, which was based 

on linear processing elements (Steinbuch & Piske, 1963). 

7.4.12 Limitations of linear networks 

An analysis of the capabilities of the perceptron was performed by Block (1962). 

Originally, Rosenblatt (1958) had found that the classification of the perceptron for 

random vectors was rather poor, but better with patterns that were correlated. 

The basic perceptron can only divide the input space by means of a hyper-plane (see 

later section), by virtue of its linear threshold operation (a unit that performs a scalar 

product of its input vector with a weight vector. It then generates a binary output 

depending upon whether or not this is above or below a threshold value is known as a 

linear threshold unit). Therefore, it is unable to learn to classify input vectors that are 

not linearly separable in this way. Minsky & Papert (1969) pointed out that such a 

linear classifier is unable to classify (or rather distinguish) many patterns that human can 

classify. Another issue relates to whether or not a classification can be learned, even 

if it is theoretically possible for it to be performed. The perceptron convergence theory 

(Block, 1962) proved that any classification that is possible can be learned. The initial 

interest in artificial neural networks considerably waned, and this is partially attributed 

to the discussion of the limitations of perceptrons by Minsky & Papert (1969), who 

placed the discussion of their capabilities on a firm theoretical foundation. Rosenblatt 

considered a R-unit in perceptron as calculating a classification, whereas Minsky and 

Papert felt that it was computing a logical predicate. In their view, the A-units that 

received input from the R-units in the retina constituted local predicates that can be 

called a. These local predicates were considered to be points on a plane, to which they 

applied geometrical arguments. The question then naturally arose as to what logical 

functions could be realised by the perceptron. They discussed two important kinds of 

limitations on the local predicates. The first of these were order-limited, in which only 

a given maximum number of retinal points could be connected to the unit that computed 

the local predicate. The others were diameter-limited, in which a geometrically limited 



region of the retina was connected to the local predicate. They showed that 

connectedness (whether or not lines in a figure are joined together) could not be 

computed using limited perceptrons, and neither could parity (whether the number of 

points present is odd or even). 

7.4.13 Hopfield networks 

The usual approach adopted in specifying a neural network is to propose a learning rule 

(often based on the Hebb rule) and then investigate its behaviour. Hopfield (1982) took 

a different stance in the derivation of a learning rule for a neural network. He started 

from the view that the function of the nervous system is to develop locally stable points 

in state-space he called attractors. Consequently, other points in state-space tend to be 

attracted towards there points. This model consisted of linear threshold units as the 

processing elements, with neurons connected to each other, but not to themselves. 

Hopfield also introduced the important concept of using a description of the network 

related to physical energy; that is 

E = -112 X X TijViVj 

i not equal to j 

where Vi are the individual element activities, and Tij = Tji is the symmetrical connection 

matrix. This system evolves as a function of time, due to the dynamics of the feedback, 

until an energy minimum is reached. These dynamics follow a simple rule whereby an 

element is chosen at random, and by consideration to the effect of its input, its state 

changes depending on whether or not its summed activity is above or below a threshold 

value. Hopfield showed that such a network can reliably store no more that 0.15N 

orthogonal patterns (ones that do not interact with others also stored), where N is the 

number of nodes. 

Although this neural model used McCulloch-Pitts type neurons that were easy to 

analyze, it is not very realistic from a biological viewpoint. Hopfield (1984) extended 

this earlier basic neuron model by replacing the output threshold function with a sigmoid 



non-linearity. This matches the graded output characteristics of real neurons (although 

they use pulse frequency modulation). This is a monotonic function which is something 

of a compromise between a threshold and linear function (see figure 7.5). In addition, 

a neuron contained a state variable that represented the weighted sum of the synaptic 

inputs. Hopfield again showed that the system finds a stable state by performing a 

minimization of energy. 

7.4.14 Problems of training multi-layered networks 

To overcome the computational limitations of single-layered linear networks, it is 

necessary to use multi-layer networks with non-linear processing nodes. Such nodes that 

are not directly connected to the input or output are known as hidden units. When we 

deal with single layered networks, we have access to both the input and the output of 

all the processing nodes in the system. In these cases, it is possible to use a learning 

rule such as those due to Hebb or Widrow and Hoff. However in the case of multi- 

layered networks, which contain hidden units, this is no longer directly possible. The 

problem of specifying how to change the connection strengths is often referred to as the 

"credit assignment problem". 

7.4.15 The Neocognitron 

There are several solutions to training such systems. In an approach proposed by 

Fukushima et al. (1983), which used what they described as neocognitrons (based on the 

earlier cognitron, Fukushima, 1975). Here it was assumed that the designer has an idea 

as to what the basic internal network structure should be. They adopted an approach to 

optical character recognition which exploited knowledge about the visual system in the 

form of simple and complex feature detectors, as described by Hubel and Wiesel 

(1962,1965). This enabled them to build a set of modules to perform initial processing 

of their images. They then trained higher levels of the system, using the input from the 

lower layer. Consequently they were able to build a system in which the input was first 

analyzed using a set of feature detectors, the outputs from which were fed into a final 

character recognition stage. 



A different variant of the credit assignment problem was solved by Barto et al. (1983). 

They made use of what they called an adaptive critic element to monitor the 

performance of an adaptive search element. It was the task of the latter to generate the 

appropriate response to the input stimuli, whereas the former element has the function 

of predicting the expected reinforcement that should be applied to the adaptive search 

element. 

7.4.16 Simulated annealing 

A problem that faces all credit assignment tasks that operate by "hill climbing", is that 

they can fail when there are local error sub-minima, because if the algorithm encounters 

one, it cannot escape from it (Selfridge, 1958). To avoid this situation requires more 

than just local information concerning the nature of the error landscape. One technique 

that can overcome the problems associated with local minima is known as stimulated 

annealing (Kirkpatrick et al., 1983). The basic idea is that instead of following the path 

of maximum gradient all the time, it should only be followed most of the time. The 

technique involves defining a system parameter temperature which determines how 

random the search is, and this relates to the physical parameter of temperature. The 

probability P(C,) of finding the system in a given configuration C,, is given by the 

Boltzmann factor 

In the case of the two configurations C, and C, with associated energies E, and h, the 

ratio of the probabilities of the two configurations is given by the relationship 

At high temperatures (large T) the denominator term KT becomes very large compared 

to either E(C,) or E(C2), and consequently the ratio between the two probabilities 

approaches 1.0. That is, the system is just as likely to change between the two states 

as to stay in the same state, irrespective of the energies of the different states. However, 



as the temperature is lowered, the probability of occupation of the high-energy state 

becomes small compared to the low-energy state. The strategy that Kirkpatrick et al. 

adopted was to start off with a high temperature, and gradually reduce it to zero. If this 

process is successful, the system should then end up in its lowest overall-energy state, 

having avoided local minima by virtue of the fact that the initial search was carried out 

over the entire error landscape. When this process is used to soften metals, it is known 

as annealing; when it is used to find a minimum in an optimization problem, it is term 

simulated annealing. 

It was later shown (Geman & Geman, 1984) that simulated annealing converges to its 

overall-energy minimum if the temperature at the k"' step is kept above the value T(k), 

given by the relationship 

T(k) >= c/[log(l + k)] 

where c is a constant independent of k. 

7.3.17 The Boltzmann machine 

As previously pointed out, there are two distinct phases of operation of pattern 

classifiers (including neural networks). There is the learning phase, during which the 

connection strengths are estimated. Secondly, there is the operational phase, in which 

the connection strengths remain unaltered, but the system responds to the input stimulus. 

In the case of the Boltzmann machine (Ackley et al., 1985), the training phase and the 

operational phase both make use of simulated annealing to enable them to "relax" into 

their solutions. The term relax is used to convey the fact that the system reaches a 

minimum energy state due to the inherent behaviour of its dynamics. The Boltzmann 

machine uses units that are the same as those used by Hopfield; They can only be on 

or off (binary) and their state depends upon whether or not the weighted sum of input 

exceeds an internal threshold level. The energy of the system is also defined in a 

similar way to that in a Hopfield network, as a quadratic function. The individual units 

are stochastic, that is the state of a unit is a probability. Thus, if two states for a given 



units are separated by energy given by OE, the unit is switched on with probability p 

given by 

where T is the temperature parameter. The name Boltzmann machine arose for this type 

of network because the relative probabilities of two states (above) is given by the 

Boltzmann distribution. 

Learning in a Boltzmann machine corresponds to the determination of the connection 

strengths between the units such that the system simulates the probabilities associated 

with its external environment (the training data). AcMey et al. (1985) showed that there 

is a simple procedure that can modify the weights so that this can be achieved. This 

involves letting the system run "free", with no constraints from the external environment 

and estimating the probability of all the states in the network. The visible surface units 

(that is, those that are directly connected to the environment) are then "clamped" 

(forced) to take desired values. Once again, the probabilities of the states of the units 

in the network are estimated. Weight changes are then made which are proportional to 

the difference between the un-clamped and clamped state probabilities. As might be 

expected of a stochastic procedure, simulations of Boltzmann machines on serial 

computers are very slow. 

7.4.18 The multi-layer perceptron 

One of the biggest recent break-throughs in the field of neural networks was the 

discovery of an algorithm to permit the training of multi-layer networks. This is the 

back-propagation algorithm, and it was discovered independently in four different places 

at around the same time (Le Cun, 1986; Parker 1985; Rumelhart et al., 1986; Werbos, 

1984). 

Back-propagation is a generalization of the Widrow-Hoff error correction rule. 

However, the Widrow-Hoff rule only applied to single layer networks in which there 



was direct access to the units. In this case the error at each unit could be directly 

formulated from the desired overall output from the network. In the case of networks 

that contain hidden units, the error cannot be explicitly computed in this way. 

The generalized delta-rule 

The generalized delta rule provides the means to calculate the required weight changes 

in the case when hidden units are present. However, it first requires that the effective 

error at a hidden unit is estimated. This is done by passing the error from the output 

layer backwards through the weighted connections to the hidden units. A given hidden 

unit sums up all of its weighted back-error contributions. Given additional information 

concerning the strength of the input it receives, its weight changes can then be computed 

as they would be in the case of a unit in a single layer network. Therefore, back- 

propagation first involves a forward-pass of the activity of the network arising from the 

input through the network. The output error is then calculated, and is then back- 

propagated through the network so that the weights can be modified. 

It is clear that the back-propagation of error is not a biologically plausible mechanism 

(because the error is propagated backwards through the same weights as the forward 

activation). However, it is currently the most effective technique for training multi-layer 

networks and has proved itself to be capable of training pattern classifiers that perform 

as well or better than many classical techniques. 

Advantages of the multi-layer perceptron 

The MLP has also shown itself to be a robust pattern recognition technique in many 

applications of speech pattern processing (Peeling & Moore, 1986; Boulard & 

Wellekens, 1986; Howard & Huckvale 1988a,c). For example, Huang & Lippmann 

(1987) found the MLP performed as well as or better than a Gaussian and K-nearest- 

neighbour classifiers using vowel formant data. Atlas et al., (1990) found that the MLP 

performed as well or better than classification trees. 



Developments of the basic architectures of systems using the MLP have been widely 

investigated, often with beneficial effects (Lang et al., 1990). The MLP provides a 

convenient formalism for constructing systems that are trained in parts (Waibel et al., 

1988) and then combined together to provide a network that is organized hierarchically 

(Howard & Huckvale, 1989). Also, the uniform structure of the MLP makes real-time 

implementations with special DSP systems relatively easy (Howard & Walliker, 1989). 

Because the multi-layer perceptron is the technique used in this thesis for pattern 

recognition, it is discussed in more detail in the next section. 

7.4.19 Networks that employ unsupervised training 

So far we have considered neural network models which require an explicit teaching 

signal. These networks are of practical value in the solution of engineering problems, 

and indeed a supervised neural network classifier is used in this thesis (the MLP). From 

a biological point of view, unsupervised techniques are perhaps more plausible, as is 

argued by the authors of these algorithms. 

Early mode-seeking (clustering) schemes were due to Stark, Okajaima & Whipple 

(1962). The spontaneous learning rule for the perceptron is also an example of 

unsupervised learning (Rosenblatt, 1962). 

Another type of unsupervised neural model is due to Grossberg (1976,1980). The 

inspiration behind this model comes from developmental physiology in the organization 

of the cortex (the highest level in the brain). There is strong evidence to suggest that 

feature detectors in the visual cortex develop and modify their response depending upon 

the particular environment in which an animal is raised. In this way the cortex may 

adapt itself to make use of the most useful features in an environment, and ignore 

others. Grossberg's work on neural models start from the development of non-linear 

lateral inhibition as a means to normalize the dynamic range of input patterns. He also 

considers the problems of how to implement short term memory as a means to maintain 

patterns after their stimuli have been removed. He proposes that this could be achieved 



by means of feedback that reinforces a given pattern of activity. Many neural models 

require the presence of a teacher to specify the target pattern class (for example in the 

perceptron, or in ADALINE). Grossberg considers it a key point that in biological 

neural networks, this cannot be done explicitly. Consequently a neural network must 

correct errors itself without outside help, and this has implications with regard to their 

structural organization. He make the suggestion that there could be reciprocal 

connections between two groups of neurons such that a response travelling "upward" can 

provoke learning by means of feedback traveling "downward". 

Another class of unsupervised neural models are the self-organizing arrays due to 

Kohonen (1982). This type of network develops topographical representations of the 

input space. An important characteristic of neurons in sensory pathways of the brain 

is that their placement reflects some physical characteristic of the external stimulus that 

is detected. For example, in the peripheral parts of the auditory system, neurons are 

arranged according to the frequency of the stimulus to which they respond best (Kandel 

& Schwartz, 1985). A Kohonen net consists of a two-dimensional array of units. The 

scheme operates according to the principle that nearby units respond in a similar fashion. 

The learning rule adopted by Kohonen achieves this kind of organization in a 

straightforward way. Initially all the units respond randomly to the input stimulus. 

However, one unit will in general respond most strongly to the input, and this unit is 

located. Neighbouring units then have their weights changed so that they also respond 

more strongly to the input than they did before. Provided there is some kind of overall 

normalization of the weights so that the overall sum of the weights remains about 

constant, this rule usually leads to topographical ordering of the units. Kohonen's 

networks can perform what is known classically as vector quantization (Kohonen et al., 

1984). 

Work on unsupervised neural networks was also carried out by Rumelhart & Zipser 

(1985). They showed that a set of simple competitive mechanisms could give rise to 

feature detectors that capture important characteristics of the input stimuli. They also 

showed that these feature detectors could then be used as part of a multi-layer classifier 

system. By using the feature detectors as the input to a linear classifier, the overall 



system could classify patterns that were not linearly discriminable, thus demonstrating 

the usefulness of competitive learning schemes in the training of multi-layer networks. 

7.5 IMPORTANT ASPECTS OF THE MULTI-LAYER PERCEPTRON 

7.5.1 Introduction 

There now follows a more detailed discussion of neural network pattern classifiers and 

the multi-layer perceptron, because this is the pattern recognition technique used in this 

thesis. Then there is a mathematical analysis of the learning procedure. Finally, some 

practical issues concerning the multi-layer perceptron are examined. In particular, a 

technique developed during the work in this thesis, known as selective emphasis, is 

described. This provides a means to increase training speed by about ten times. 

7.5.2 Computation using a linear network 

The simplest structure for a network classifier is a one-layer system, in which each 

output node is connected directly to each input node via a weight. The value of each 

output is computed by summing the contributions due to each input value multiplied by 

its appropriate connection strength. Such a network computes the scalar product of the 

input vector X, with its connection weight matrix W,. That is 

Where Y, is the output vector for the network. When such a linear network is used to 

implement two-class pattern classification, the relationship used to calculate the output 

class is given by 

else if W,.X, c T, wi = W, 



where T is a threshold term. It can be seen that this is the equation of a hyper-plane. 

7.53 Effect of cascading linear networks 

Such a network is only capable of linear transformations of the input vector. To achieve 

more complex operations, multi-layer networks must be used. However, it is easy to 

show that there is no computational advantage in cascading linear networks. Consider 

the effect of feeding the output of one linear network into the input of a second linear 

network defined by 

In this case, setting X, = Y, gives 

Therefore 

where W, = W2W1 

Thus the computational effect of the two cascaded networks can be realised using a 

single network in which the connection matrix is represented by the product of the 

previous connection matrices. It follows that the computational function of a cascade 

of any number of linear networks can always be implemented using a single layer linear 

network with the appropriate weight matrix. 

7.5.4 Limitations of linear networks 



A classical example used to demonstrate the limitation of linear networks is the 

exclusive-or (XOR) problem (see figure 7.6). As shown earlier, a linear classifier can 

only partition the input space by means of a hyper-plane. Consequently, it cannot solve 

the XOR problem. 

7.5.5 The effect of "hidden units" on the classification capabilities of a network 

A signal transformation of arbitrary complexity may be achieved by means of a network 

of connected elemental processing units, provided they incorporate some kind of non- 

linearity (Rumelhart & McClelland, 1986). Figure 7.7 illustrates networks with no 

hidden layers, one hidden layer and two hidden layers. 

A cascaded network which employs output non-linearities at each units cannot be 

considered equivalent to a single layer network with adjusted weights. Typical non- 

linearities that are employed include simple threshold functions and sigmoid functions. 

Under these circumstances, cascading layers of units increases the generality of the 

computation that can be carried out. 

In the case of threshold units, a single layer network achieves a linear decision region 

partition. It has recently been shown that one hidden layer is theoretically sufficient to 

solve any problem, but there are no constraints on the required number of units 

(Cybenko, 1989; Funahashi, 1989). However such a solution may not necessarily be the 

most efficient and it may sometimes be better to use to use two hidden layers 

(Lippmann, 1987; Widrow & Lehr, 1990). The decision region required by any 

classifier can be implemented using a 3-layer feed-forward network (Cybenko, 1989; 

Moore & Poggio, 1988). Figure 7.8 illustrates some of the possible decision regions 

that can (and cannot) be implemented using an MLP with different numbers of layers. 

The consideration of the decision boundary complexities in relation to the hidden units 

provides some insight into the necessary number of hidden units for an application. In 

the case where decision regions are disconnected or meshed, there should be more than 

one unit in the second layer (Lippmann, 1987). 



Similar behaviour is obtained using sigmoid non-linearities instead of linear threshold 

units, although this complicates matters somewhat. However, the use of sigrnoid non- 

linearities enables the use of the back-propagation algorithm for the training of the 

multi-layer network, which cannot be used for threshold units. 

It is to be noted there are other techniques employed to make classifiers capable of 

implementing non-linear decision boundaries. Rather than use other layers of non-linear 

elements, it is possible to introduce non-linear terms in the input to a linear classifier. 

One approach involves using polynomial terms of the original input vector to generate 

a modified input vector (Specht, 1966; Barron, 1984). 

7.5.6 Mathematical analysis of learning 

There are essentially two types of learning rule to estimate the weights in supervised 

network classifiers. Firstly there are rules that employ error-correction, which alter the 

weights in order to conect the output response. Error correction rules tend to operate 

in an ad hoc fashion. An example of this class of rules is the perceptron convergence 

theorem. Secondly, there are gradient descent rules which alter the weights with the 

intention of minimizing the average mean-square error of the network, with respect to 

all the training data. We shall only consider the latter in detail, as this is the class of 

rule employed to train the multi-layer perceptron. 

7.5.7 The delta rule 

The delta rule is the name given by Rumelhart et al. (1986) to the least-mean square 

training rule. It is an extension of the training scheme for linear networks due to 

Widrow & Hoff (1962) which is based on gradient descent. We shall consider the 

latter fxst and then show the extensions necessary to derive the generalized delta rule, 

which can be used to train multi-layer networks. This derivation follows that in 

Rurnelhart & McClelland (1986). 

In gradient descent learning rules, the weights in the network are altered according to 



the relationship 

Where W, represents the weights and gradient, is the gradient in the error surface with 

respect to the weights, both at iteration k, and p is a constant. We must now calculate 

the term p.gradient, so that we can use this relationship to train the network. 

Let the output from the network be Opj and the target patterns be Tpj, where p is the 

particular pattern being processed at that time and j is the particular output node. We 

can define an error for one pattern presentation as 

The total error over the training data is the error sum for all patterns in the training set 

given by 

Since we wish to perform a gradient descent, we must calculate the change in error with 

respect to the weight changes. Using the chain rule, we may write 

The first term is given by 

In the case of a linear network the outputs are directly available, so 



Therefore 

where is the input to unit i for pattern p. Therefore these equations yield 

and summing the error over all training patterns gives 

To achieve gradient descent, we must alter the weights in proportion to the quantity 

oPj.Ipi, which is calculated after each pattern presentation. It is worth mentioning that 

a true gradient descent is only followed if all the weight changes are made together after 

the presentation of all the patterns in the training set. However, if the learning constant 

is sufficiently small (a constant used to scale the weight changes), the weight changes 

can be made after each presentation without the procedure departing significantly from 

gradient descent. 

In the case of a linear network, the error surface is a hyper-quadratic function, with only 

one minimum (Widrow & Hoff, 1960). Therefore, in this case gradient descent will find 

the optimum solution. The situation becomes more complicated when there are hidden 

units in the network, because there are then local minima of the error surface. In 

addition, we cannot directly compute the error derivatives for the hidden units (the credit 

assignment problem mentioned earlier). There now follows a derivation of the general 

delta rule for gradient descent in multi-layer feed-forward networks which solves this 

problem. 



7.5.8 The generalized delta rule 

The error at the output of a multi-layer network can be computed as in the case for a 

linear network. However the output from a unit is given by 

where 

and squashing function Fj is a non-linear activation function. Fj must be both 

differentiable and non-decreasing (the former will soon become apparent when we 

require to calculate its differential). It was explained earlier that such a non-linearity 

is necessary if any benefit is to be gained from using multiple layers. We can write the 

change of error with respect to the weight change using the chain rule as 

The second term can be written as 

GNET,,/SWji = 6/SWji . Z WjrOpt = Opi 

k 

For clarity of representation, we shall now define 

Thus 



Therefore to achieve a gradient descent in error E we must make weight changes 

according to the relationship 

Where r is a constant known as the learning rate. We must now calculate the error 

term opj. There is a simple recursive calculation for these weight changes that may be 

performed by the back-propagation of errors through the network. Again using the 

chain rule 

where 

This is the derivative of the squashing function Fj evaluated at the input NET,, to that 

unit. There are now two cases that follow: 

Case 1. If the unit uj is an output unit, then the definition of E, simply gives 

Therefore 

Case 2. If the unit uj is not an output unit, then we must again use the chain rule 



This yields 

Therefore, there are three main equations that describe the operation of the generalized 

delta rule. 

where 0 represents the change. For an output unit 

and for units that are not output units 

The application of the generalized delta rule involves a forward and backward pass 

through the network. In the fonvard pass, the outputs Opj for each unit are calculated 

and stored. The overall output from the output layer is then compared with the target 

patterns Tpj. An error signal is then propagated backwards through the network. 

7.5.9 Sigmoid squashing function 

A suitable squashing function that may be used in the MLP is the sigmoid non-linearity. 

One definition used by Rumelhart et al. (1986) is given by 



where we redefine NETpj to include a threshold term Tj as follows; 

The derivative of the sigrnoid function is given by 

When this is substituted into the generalized delta rule equations, it gives the following 

definitions for the error. In the case of an output unit 

In the case of a unit that is not an output unit 

A flow chart showing the operations involved in training an MLP with back-propagation 

is shown in figure 7.9. 

7.5.10 Starting condition for networks 

The initial weights in the network should ideally be set as near as possible to the final 

positions that will be found by the training (Lippmann, 1987). Naturally, it is typically 

not possible to know what they should be. In this event, a safe starting point is to use 

small random weights. It is important that the initial set-up is not symmetrical, or it will 

not be able to escape from a symmetrical configuration. In addition, no weights should 

be given an initial zero value, because they cannot escape from this value since any 

weight change is always zero (Rumelhart et al., 1986). 



7.5.11 Performance of the MLP 

Although there is no convergence theorem for the MLP, this technique has been shown 

to be useful in many applications. The back-propagation algorithm has been tested 

widely, and found to give good results for many tasks (Rumelhart, Hinton & Williams, 

1986). 

As for any minimization technique that works by gradient descent, the back-propagation 

algorithm can run into problems when local minima in the error function are 

encountered. However, these problems can be reduced by some basic steps. If more 

hidden units are used that are really necessary, local minima will often result in 

acceptable performance. Secondly training runs from a number of different random 

weight starting points can lead to different solutions, and the best can then be selected. 

Lowering the gain scaling terns can also help avoid local minima. When the training 

data set is relatively small and the patterns are presented many times, the presentation 

sequence should be random to prevent cyclic adaption (without learning) from taking 

place (Ridgeway, 1962). Additional algorithms have been proposed to speed up the 

training (Parker, 1986). 

7.5.12 Using "Momentum terms" during training 

The basic technique of gradient descent can be improved by adding a momentum term 

to the weight changes. This effectively provides low-pass filtering on the weight 

changes which helps avoid local minima in the error function. Thus 

where I' is another learning rate constant, which has the effect of dampening oscillations 

of the training weights, and a is the momentum term (notice that I' = 1 and a = 0 results 

in normal training). Rumelhart et al. (1986) quote suitable ranges of 0.05 S r I 0.75 

and 0 I a I 0.9. However, the optimal values of these constants are typically dependent 

upon the problem. 



The effect of r and a on the learning process can be understood by considering two 

features of the error surface. 

The first is the case of a ravine. When the value of the learning rate constant r is 
small, the learning trajectory proceeds satisfactorily down the ravine. However, when 

r is large, the trajectory can oscillate from side to side which slow down learning. This 

can be offset by the inclusion of the momentum term a. 

The second feature of the error surface to be considered is a plateau. This is typically 

encountered as the search approaches the global minimum. Under such circumstances, 

the gradient becomes very small which results in further training becoming very slow. 

In this case, a large value of the learning rate parameter r is desirable. However, it is 

clear that a "good" value for this case will be too big for the ravine case. Consequently, 

an adaptive scheme is desirable, which alters the parameters depending upon the nature 

of the local error surface. 

7.5.13 Adaption of the learning rate and the momentum term 

One such technique is due to Chan & Fallside (1988) and operates by dynamically 

adjusting the momentum term and learning rate. Their approach is to monitor the angle 

8, between the current gradient and previous weight update and the angle Q, between 

successive weight updates, the first of which give an indication of the nature of the error 

surface, and the second gives an indication of the effect of the smoothing produced by 

the momentum term. These are given by the equations: 



where gradE, is the current gradient. They argue that the learning rate F, should be 

reduced at a ravine and increased at a plateau, which corresponds to 90' C 0, < 360' 

and 8, -> 360' respectively. Therefore a suitable adaption is given by 

+I adapt the momentum terms, they choose the relationship 

where f, is given by 

a n d 0 2  f, ,<l.  

This adaption avoids the weight update from being dominated by the momentum term. 

7.5.14 The number of patterns used to estimate weight changes 

Chan & Fallside used the adaption scheme in conjunction with an updating of the 

weights over the entire training data set whenever practical, or over representative sub- 

sets of the data under those circumstances wherever such a scheme was not practical. 

The advantage of using the latter procedure is that it is then possible to make MLP 

weight changes over a relatively small set of patterns, but ones which are a good 

reflection of the possible range of patterns in the data set. This is better than making 

the update after each pattern, because the latter is not guaranteed to give a good gradient 

descent, and the direction of the weight changes tends to fluctuate widely between 

successive updates, which makes it impossible to use adaptive learning rate and 

momentum term learning schemes. In general one would not wish to update the weights 

only once per pass of all the data for large data sets, since this would result in very slow 



learning. This is because it is only possible to alter the weights by a relatively small 

mount per update, and since the time taken to determine each update would be 

relatively large in this case, to perform enough updates to find a suitable solution would 

take a long time. 

7.5.15 Selective emphasis training of the MLP 

Training times for the MLP can become long when the training data set is large and 

pattern vectors are of high dimensionality. A method to increase training speed was 

developed, and it is called selective emphasis training by the author (Howard, 

1990,1991). It operates by changing the relative emphasis of different pattern vectors 

during training the MLP. This is achieved by scaling the weight changes that result 

from a given pattern by a factor that depends upon the estimated importance of that 

pattern. The importance of the pattern vector is estimated with regard to several 

considerations. 

The importance of a pattern to the classifier can be specified a priori if it is possible to 

have an idea of how reliable that output class is. For example, one has more confidence 

that the centre of a voicing region should be classified as voicing present than at the 

edge of the voicing region (this principle is illustrated in the case of period excitation 

markers in figure 9.11 in chapter 9). Consequently, it may make sense to de-emphasise 

boundaries, since their precise location is often difficult to assess. 

In the case of a pattern class that only occurs infrequently, their contribution to the 

weight changes may be small compared to the contribution from the other class which 

occurs more frequently. In such cases, it is sometimes useful to emphasize the weight 

changes arising from different pattern classes by different mounts. However, since the 

effect of this is to alter the occurrence probability of the pattern classes, such a scheme 

cannot be used alone because it can results in a large number of false alarms being 

generated. 

It has been found valuable to concentrate the training on the patterns that are falsely 



recognized, and not overwhelm the MLP with less important weight changes from the 

data that is dealt with acceptably. This can be achieved by making the emphasis 

dependent on the output from the MLP as well as the target pattern class. Thus a 

pattern that gives rise to an output above a preset threshold gives rise to weight changes 

which are scaled differently than if the output was below the same threshold. In this 

thesis three thresholds were employed, one for period-marker-present target pattern 

classes, one for uncertain pattern classes and another for period-marker-absent classes 

(this is described more in chapter 9 and illustrated in figure 9.12). It is possible to 

arrange the emphasis such that patterns that give rise to outputs which are close enough 

to the targets give rise to weight changes that are ignored (and need not be computed, 

thus speeding up program operation). This makes it possible to reduce the contribution 

of certain regions in the training data to zero if required. 

The parameters used with the technique are critical, and for the work here a low 

threshold L=0.1 and a high threshold H=0.9 were used to indicate when the output from 

the recognition is close enough to the binary targets for their corresponding updates to 

be ignored. A flow chart for the selective emphasis scheme is given in figure 7.10. 

7.5.16 Similar techniques to selective emphasis 

An algorithms due to Mays (1963) exhibits similarities to the selected emphasis method 

that has just been described. He called this "modified relaxation adaption". 

In the modified relaxation adaption rule, the weight changes are not generally made in 

proportion to the error, but rather they are only changed if the output falls within the 

dead zone. That is: 

W,, = W, if loutputl 2 z 

W,+, = W, + p.Xk/[iXki2] if IoutputI c z 

For a value of the dead zone parameter 0 c z c 1 and learning parameter 0 c p 2, 
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Mays showed this rule converged for linearly separable patterns. 

This rule is similar to the selective emphasis method (that was discovered independently 

of Mays earlier result) although the selective emphasis technique in its general form uses 

a 2x2 matrix to specify the four cases that can occur, and associates a weight with each 

case. The most important point in relation to the selective emphasis technique is that 

in both cases something different is done depending upon whether or not the output 

from the network is close to the target, or far from the target. 

7.5.18 Relationship between capacity and required training examples 

A characteristic of pattern classifiers that is associated with their capacity is their ability 

to generalise. That is, the ability of a classifier to respond appropriately to an input 

pattern vector that was not used to train the classifier. If this ability was not needed, 

then we may just as well use a look-up table, as mentioned in an earlier section. 

To achieve good generalization, the training data set should contain many more patterns 

than the capacity of the network (Cover, 1964; Brown, 1964; Nillson, 1965) that is for 

a two class classifier 

Where Np is the number of patterns and NW is the number of weights in the network. 

This is because the training examples must constrain the operation of the network to 

behave as desired. This will not be possible if the number of degrees of freedom of the 

network is greater than the number of training patterns. Under such conditions, the 

initial weights can interfere with the generalization capabilities of the network (Baum 

& Haussler, 1988). 

7.5.19 Generalization of the training data to testing data 

Baum & Haussler (1989) derived a relationship between the number of weights W in 



a network, the accuracy e of the classification and the required number of training 

examples m. Their calculations are based on considerations of the capacity of the 

network in terms of the number of dichotomies (the dichotomization capacity of a 

pattern classifier is the number of possible classifications it can distinguish) it can 

implement (Cover, 1965). 

Provided that the training examples are taken from the same distribution as the testing 

examples, then for fully-connected feed-forward nets using any learning algorithm, they 

arrived at the relationship that using any fewer than n(W/E) training patterns would 

result in the failure to correctly classify, for at least some of the time, more than a l-e 

fraction of the future test examples, where is some constant. If we ignore this 

constant and set i2=1 to get a rough estimate, then for an accuracy of 90% (that is E = 

0.1) this implies we need at least 10 times as many training examples as there are 

weights in the network. This figure agrees reasonable well with the rule-of-thumb 

adopted by Widrow (1987). 

One approach to increase amount of training data available for pattern classifiers 

involves adding noise to the measurements in the input vectors (Elman &, Zipser 1987). 

Such an approach may help improve generalization capability if only a small training 

set is used. The pattern distribution generated by adding noise will in general be 

different from the true distribution and it is clearly preferable to use more real data 

instead. 
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Figure 7.1 An example of a 2-dimensional patterns representing the height and weight 

of a group of subjects. 

The points representing the two female and two male subject are shown, together with 

a possible decision boundary that separates the male and females. An unknown point 

is also shown, which falls in the female region. 
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Figure 7.2 Schematic diagram of all the operational stages in a pattern recognition 

system. 

The object (or input phenomenon) under investigation is first sensed and then the 

measurements are pre-processed. This stage can emphasise important aspects of the 

measurements. During training (learning) mode, the pre-processed data (together with 

the target pattern classes in a supervised system) is used to establish the panen 

classification decision boundaries (shown as the lower path). During recognition mode, 

the pre-processed measurements are classified using the pattern classifier. Sometimes, 

contextual information is also used to provide additional information for the 

classification, as illustrated in the top path). 

(Taken form Tou & Gonzalez, 1974). 
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Figure 7.3 Schematic diagram for a multi-class Bayes' pattern classifier system. 

The implementation of the classifier involves calculating the probabilities of each 

possible class and then selecting the one with the higher probability. 

(Taken form Tou & Gonzalez, 1974). 



Figure 7.4 Schematic diagram for a perceptron. 

The retina (R) is the source of the inputs. These are then weighted and then summed 

to give an overall output. 

(After Rosenblatt, 1958). 
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Figure 7.5 Comparison of threshold function with a sigrnoid function. 

(Taken from Rumelhart & McClelland, 1986). 



Figure 7.6 Diagram showing the pattern classifier decision boundaries required to solve 

the XOR problem. 

Patterns of the two classes are represented as A and B respectively. Patterns of class 

A contains the points (1,O) and (0,1), whereas pattern class B contains the points (0,l) 

and (1,l). To compute the XOR function, it is necessary to discriminate the A and B 

patterns. They cannot be discriminated using a linear decision function, as shown in 

the top diagram, and a more complex boundary is required (shown in the lower two 

diagrams). 

(After Lippmann, 1987). 
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Figure 7.7 Schematic diagram of multi-layer perceptron with different number of layers. 

The figure shows a net with no hidden units, a net with one layer of hidden units, and 

a net with two layers of hidden units. 
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Figure 7.8 Schematic diagram showing relations hip between decision boundaries and 

layers in the multi-layer perceptron. 

A network with no hidden units can only implement linear decision surfaces. One or 

two layers of hidden units can implement decision surfaces of arbitrary complexity. 
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Figure 7.9 Flow chart for multi-layer perceptmn learning algorithm using back- 

propagation. 

The operations required to train an MLP using back-propagation are explained in the 

main text. 

(Program by M A Huckvale). 



Figure 7.10 Flow chart for multi-layer perceptron learning algorithm using back- 

propagation with selective emphasis. 

The essential difference with normal back-propagation training is that weight updates 

are made to depend upon the response to the input pattern and the target output class. 

(Program by I S Howard). 



CHAPTER 8: BASIC CONCEPTS AND PRELIMINARY EXPERIMENTS IN SPEECH 

EUNDAMENTAL PERIOD ESTIMATION USING PATTERN CLASSIFICATION 

8.1 BACKGROUND TO THE DEVELOPMENT OF THE MLP-TX ALGORITHM 

8.1.1 Introduction 

This chapter provides the background reasoning behind the design and preliminary 

development of an algorithm that performs speech fundamental period estimation using 

pattern classification. This algorithm is called the MLP-Tx algorithm by the author, 

because it uses a multi-layer perceptron classifier (MLP) to estimate the speech 

excitation markers (Tx). It is shown that the estimation of the fundamental period of 

speech can be performed using a system with the same basic structure as one used 

earlier to perform the task of voicing determination, providing the system parameters in 

the latter are suitably adjusted. Some initial experimental results generated using a 

preliminary configuration of the MLP-Tx algorithm are given. Limitations of this initial 

configuration and of the first experiments are then discussed. . 

8.1.2 Initial work task at UCL 

Preliminary research by the author was concerned with voicing determination algorithms 

that made use of the laryngograph, in order to provide a reference voicing system 

against which future speech-based systems could be compared. Some early schemes 

developed made use of envelope detection of the laryngograph waveform. However it 

was soon appreciated that such schemes can smear out the onset and offset of voicing 

in time. An example of this is shown in figure 8.1. In addition, gross larynx 

movements, which can easily be separately identified in the original laryngograph time 

waveform, become indistinguishable from true voicing regions after passing through the 

envelope detector. Simple high pass filtering can be useful but these problems can both 

be avoided if the presence of voicing is based upon the detection of individual cycles 

in the laryngograph waveform by using features that signify their shape, rather than 

using the gross laryngograph envelope. In this case, the onset of voicing can be 



determined to within a fundamental period and the problem of time-smearing by the 

envelope detector does not arise. Similarly, because the laryngograph cycles are 

detected on an individual basis, spurious cycles can be identified by their isolation. 

One feature that reliably occurs within each laryngograph cycle (in normal voice) is the 

point of maximum positive gradient, as discussed in previous chapters. At this point it 

became clear that a system that would provide a good estimate of the voicing regions 

(using the laryngograph waveform) was one that also performed fundamental period 

estimation. Various algorithms to perform this task were then implemented on the 

computer system, and the final result of these developments were the laryngograph- 

based reference period marker programs described in chapter 5 .  This pair of programs 

provided a reliable means to label data with fundamental period markers (Tx). 

8.1.2 Use of the laryngograph to indicate voicing 

The fundamental period markers were converted to labels to indicate gross voicing using 

a simple procedure. The onset of a voiced region was defined as the time of occurrence 

of the first marker in a sequence of markers. The end of a voiced region was defined 

as the time of occurrence of the last marker in the sequence, plus the last period value. 

Markers were only considered to occur within the same voiced region if they were 

closer than 20rns in time. This algorithm was also implemented on the computer 

system, and together with the fundamental period estimation algorithms, it provided a 

means to automatically label laryngograph data with annotations signifying the presence 

of larynx voicing. Provided speech and laryngograph were recorded simultaneously, this 

gave the means to label a speech pressure waveform with voicing annotations. 

8.1.3 Speech voicing determination using pattern classification 

After the establishment of a reliable system to estimate voicing from the laryngograph 

signal, attention was turned to the estimation of voicing using the acoustic speech signal. 

Various approaches have been employed in the past to tackle this problem. Many of 

these schemes involved the analysis of a single parameter of the speech signal, and often 



operate in conjunction with fundamental frequency estimation algorithms; for example, 

the cepstrum algorithm (Noll, 1967), or autocorrelation (Sondhi, 1968). Such single 

feature schemes typically generate an estimate of the regularity of the input signal, and 

the speech is classified as voiced or unvoiced depending upon whether this value is 

above or below a preset threshold. One more sophisticated approach that appeared 

particularly encouraging was the statistical pattern recognition approach of Atal & 

Rabiner (1976), since their scheme provided the means to combine several features in 

an optimal and automatic way (by training the classifier). The features they employed 

were the speech energy, zero-crossing rate, autocorrelation coefficient at one unit sample 

delay, the first LPC predictor coefficient and the energy of the LPC prediction error. 

These were defined on a frame-by-frame basis and used to generate an input vector 

which was then fed to the input of a pattern classifier. The classifier was initially 

provided with labelled speech data and was trained to perform the desired voicing 

determination task. 

A scheme using the then newly emerging pattern recognition technique, the multi-layer 

perceptron, was used by Peeling & Bridle (1986) to recognize several acoustic-phonetic 

qualities of the speech signal, including voicing. Their system employed input pre- 

processing using a 19-channel vocoder, and its performance was shown to be high. 

8.1.4 Experiment using pattern classification to estimate voicing 

The work by Peeling & Bridle (1986) prompted the author and a colleague (Mark 

Huckvale) to set about to develop and test voicing determination algorithms that 

employed 19-channel vocoder input pre-processing (a schematic diagram for which is 

shown in figure 8.2), and used either a Bayes' classifier for Gaussian pattern or a multi- 

layer perceptron to implement the pattern classifier. This work was reported by Howard 

& Huckvale (1987), but it is briefly described here because it  forms a good basis for the 

introduction of the MLP-Tx algorithm. 

Database for voicing determination experiments 



To provide a set of training data for the classifiers and testing data so that the systems 

could be evaluated, five male speakers were recorded in an anechoic room using a high 

quality B&K 4134 condenser microphone, together with the output from a laryngograph. 

The microphone was maintained 15cm from the subjects lips and was located equally 

forward and to the side to avoid wind noise from the subject's breath. Each speaker 

was require to read "The Rainbow Passage" twice (Mermelstein, 1977; It also appears 

in appendix A3); once to provide the training data and once to provide the testing data. 

This text was chosen because it was phonetically balanced. Both channels of the data 

were then low-pass filtered at 5kHz using eighth-order Butterworth filters and acquired 

onto a Masscomp 5500 computer via a 12-bit A D  converter running at a 1OkHz 

sampling rate. 

The voicing regions on all the data were then automatically labelled using the 

laryngograph-based techniques described earlier. Next, the speech data was analysed 

using a 19-channel vocoder, which generated 19-element output frames at lOms 

intervals. Either one or three input frames were used as the input to the pattern 

classifiers. The additional adjacent frames included in the input vector provided context 

(Boulard & Wellekens, 1989) for the recognition task. The Bayes' classifier was trained 

by estimating the mean vectors and covariance matrices for the voiced and unvoiced 

pattern vectors. Various configurations of the MLP were investigated. The MLPs were 

trained using back propagation with weights updated after each pattern presentation. 

Passes over the training data were made until the networks showed no sign of further 

learning. 

The initial results from this voicing determination experiment were most encouraging. 

The results for the Bayes' classifier and the MLP classifiers are given as the receiver 

operating characteristics for the respective detectors, and are shown in figures 8.3 and 

8.4 (Howard & Huckvale, 1987). The MLP was shown to give better performance than 

the Bayes' classifier for this task. 

8.2 INITIAL MLP-TX EXPERIMENTS 



8.2.1 Similarities between voicing determination and fundamental period estimation 

The problem of detecting the points of excitation in the speech signal is somewhat akin 

to voicing determination, except the event to be detected (the excitation marker) is 

essentially impulsive rather than a steady-state region. Because the precise location of 

the excitation marker is essential to achieve an accurate fundamental period estimate, 

a much higher resolution is needed than in the case of voicing determination. 

Formulating the problem of period estimation in this way has the advantage over short- 

term analyses that the excitation points can be detected on a period-by-period basis. In 

addition, it is the actual excitation point in the speech waveform that is estimated using 

this approach, as opposed to an arbitrary repetitive point which is the function of many 

time-domain period estimators (see chapters 3 and 4). 

It was desirable to use previously written software for this task, to reduce the 

programming workload. The system used for voicing determination was consequently 

modified to perform speech fundamental period estimation. The MLP-based voicing 

determination scheme involved the classification of the input speech signal into voiced 

or unvoiced frames, each lasting 10ms. By reducing the frame duration, and modifying 

the pre-processing, the system could be used to classify frames into those that contained 

an excitation marker, and those that did not. 

8.2.2 Initial system structure 

The two questions that then arose were what would constitute a suitable set of input pre- 

processing filters, and what should the frame rate be. The original vocoder analyzer was 

clearly an unsuitable pre-processor for such a task, because it was specifically designed 

to lose information regarding the excitation present in the input speech. That is, any 

temporal fluctuations in the output from a channel after the full-wave rectifier stage are 

smoothed out using a 50Hz cutoff low-pass filter. In addition, the output frame rate of 

lOms was much too low to be of any value in fundamental period estimation. Such a 

frame rate would give rise to a frequency quantization error of 100% at 100Hz. 



Wideband spectrogram 

In the task of deciding upon the characteristics of an appropriate set of pre-processing 

filters, consideration was then given to the appearance of a wideband (that is, with an 

analysis bandwidth of around 300Hz) spectrogram for (male) voiced speech. Such a 

spectrogram shows a vertical striation whenever there is a well defined excitation point 

in the input speech (see figure 8.5), and it is widely appreciated that such a spectrogram 

can be used to give a crude estimate of the fundamental period (Borden & Harris, 1980). 

By using input pre-processing to the fundamental period estimation algorithm that 

retained temporal information in the same way, the problem can be viewed as the 

detection of the vertical striations (this considers the problem to simply be the image 

analysis of a wideband spectrogram. There are, of course, other and probably better 

ways to view the problem, and other potential pre-processing schemes are discussed in 

chapter 9). 

MLP-Tx wideband filterbank 

The filterbank that was initially used as a pre-processor for the fundamental period 

estimation task constituted an approximation to a wideband filterbank that was 

implemented using the 19-channel vocoder program. Filter band-widths of 300Hz are 

typically used in a wideband spectrogram, although in the wideband filterbank the 

bandwidths of the higher filters were increased slightly from 300Hz to reduce the 

number of filters required to cover the desired frequency range and also to mimic the 

behaviour of auditory filters (Moore & Glasberg, 1989). There was an imperative need 

to keep the number of channels to a minimum, because the computational load was 

proportional to the number of channels. Consequently much coarser steps between the 

filter centre frequencies were used than in a genuine wideband spectrogram (which may 

typically employ in the order of 100). The frequency range of interest for voiced speech 

covers the frequency range of about 40Hz to 3kHz. The filter channels were selected 

to cover this range, with intersection at their -3dB points to prevent any signal 

frequencies from being poorly represented in their outputs. The filterbank that was 

consequently arrived at comprised nine fourth order IIR band-pass Butterworth filters 



with -3dB points of 40-300Hz, 3W600Hz, 600-900Hz, 900-1200Hz, 1200-1600Hz, 

1 60e2000H2, 2000-2400Hz, 2400-2800Hz and 2800- 3300Hz. 

Selection of fmme rate 

The outputs from the filters were half-wave rectified, smoothed by means of a second 

order low-pass Butterworth filter with a cut-off fquency  of 1kHz and then down- 

sampled to 2kHz. Half-wave rectification was employed as opposed to the full-wave 

rectification originally employed in the vocoder, because the filter outputs would often 

be sinusoidal (or more generally symmetrical), and therefore full wave rectification 

would double their periodicities (Hess, 1984; This issue was also discussed in chapter 

4). The smoothing was carried out to prevent aliasing of the signal in the subsequent 

downsampling to 2kHz, which was performed to achieve data-reduction. This sampling 

rate was a compromise between a usable time-resolution and the amount of computation 

required by the subsequent pattern classifier stage. It is to be noted than several 

established fundamental f~quency estimation algorithms also perform downsampling to 

2kHz before their basic extraction stages, again to reduce the computational load (for 

example SIFT, Markel, 1972). The sampling resolution issue is looked at in more detail 

in chapter 9. However, it must be emphasised here that the immediate objective of the 

work was to produce an aid for the profoundly deaf. A maximum useful auditory input 

of 500Hz is well catered for by this sampling frequency. 

Figure 8.6 shows a close up of part of a small piece of speech and associated signals. 

Trace A is the speech pressure waveform, trace B the laryngograph (Lx) waveform. The 

output from the filterbank is shown as a grey-level display in item C. It can be seen 

that temporal variation concerning the excitation is retained. Trace D shows the 

reference period markers generated from B. 

Pattern vector generation 

Since the pattern classifier only receives information about the input speech from within 

its input window (because it has no memory of past inputs), in order for it to perform 



its task of detecting the excitation points, it is necessary for the window to span a width 

greater than just a single 0.5ms frame. The latter would give little, if an, evidence of 

the filterbank time response due to an excitation, which manifests itself over several 

milliseconds. Initially a symmetrical input window of 10.5ms was used to generate the 

input to the pattern classifier, because it spans about one period of speech at the lowest 

fundamental frequency likely to be encountered for many speakers (that is, IOOHz), 

although some male speakers reach lower frequencies than this and creaky voice may 

typically be at 30Hz. Thus the initial input vector was comprised of the current frame 

of wideband filterbank data together with 10 frames back in time and 10 forward in time 

(that is, 21 frames in all), with the current frame in the centre of the input window 

(there was computational advantage to be gained by keeping the input window as small 

as possible. Issues concerning the input window size are discussed further in chapter 

9). 

8.2.3 Preliminary attempts at fundamental period estimation 

The initial multi-layer perceptron configuration chosen was selected with regard to the 

configurations that gave reasonable results for voicing determination (Howard & 

Huckvale, 1987). These experiments indicated that at least one layer of hidden units 

would be useful and an initial arbitrary guess at 8 was made. Hence the very first trial 

of the MLP-Tx system made use of an MLP with 189 inputs, 8 hidden units and 1 

output. The training (and in this case testing) data consisted of about 2 seconds of close 

microphone anechoic speech and laryngograph signal for 1 male speaker that had been 

acquired using a 12 bit A/D converter at a l OkHz sampling rate. 

Labelling training and testing data with excitation markers 

The output pattern classes for the data were labelled automatically using the reference 

period marker algorithm (described in chapter 5) operating on the output of the 

laryngograph. In this case, an output class was defined every 0.5111s. Whenever a 

period epoch marker was present within a frame, the target pattern for that frame was 

set to a value of l .  Otherwise the target patterns were set to a value of 0. 



The training was carried out using back propagation with an update after each pattern 

presentation using learning rate r = 0.05 and momentum term a = 0.9. The recognition 

output obtained after 32 training cycles appears in figure 8.7. This was the very first 

sign that the task could be performed, and encouraged further investigations. After 

running a set of similar experiments, it was found that better results on the small piece 

of data could be achieved using a MLP network with a larger input window of 41 

frames. In addition two layers of hidden units gave output values from the MLP that 

more consistently reached their period-marker-present training target values of 1 than 

could be achieved using only one hidden layer. Finally a network was chosen with 369 

inputs, two hidden layers each of ten units and 1 output. Adjacent layers were fully 

interconnected. The schematic diagram for this configuration of the MLP-Tx algorithm 

is shown in figure 8.8. The overall system block diagram is shown in figure 8.9. 

8.3 FIRST MLP-TX EXPERIMENTS ON A LARGE DATABASE 

8.3.1 Data for the MLP-Tx experiment 

To reliably evaluate the system, a much larger set of data was required to train the 

algorithm, and an additional different set of data was required to test it. From the 

results given in chapter 7 concerning the amount of training data needed to give good 

generalizations of a single output classifier, we require Np >> NW, where Np is the 

number of training patterns and NW is the number of weights in the classifier. In this 

case NW = 3690, so we require Np >> 3690. The data used to train and test the MLP-Tx 

algorithm was the same as that for the earlier voicing estimation task. Since the test 

data was independent from the training data, any limitation due to insufficient training 

data does not affect the legitimacy of the test results. The "Rainbow passage" training 

data contained approximately 3x1d 0.5ms frames of data, and therefore a similar 

number of different pattern vectors. However, there were many more patterns 

corresponding to the period-marker-absent case than for the period-marker-present case. 

Altogether, there were about 8000 patterns corresponding to the period-marker-present 

case. This number is still twice the number of weights in the classifier. Consequently, 

even assuming the number of period-marker-present patterns were the most important, 



the training data still does not violate the requirement that the number of patterns should 

be greater than the number of weights in the classifier. 

Adding noise to the speech signal 

To give a more realistic task for the MLP-Tx algorithm, all copies of the original 

Rainbow passage data were contaminated with additive canteen noise at levels of 0dB 

and 20dB SNR, providing two sets (one at 20dB SNR and one OdB SNR) of data for 

training and similarly two sets of data for testing. The noise signal was recorded in the 

UCL refectory at lunchtime, and included impulsive noise and background 

conversations. The SNR was specified as follows: The power in adjacent 500ms frames 

of each signal was calculated, and the frame in each signal containing the maximum 

power was identified. The noise signal was then scaled so that the ratio of the signal 

and noise signals corresponded to the desired SNR, and the two signals were then added 

together to give a speech signal with the appropriate SNR. The spectrum for the 

canteen noise appears in figure 8.10. This plot was generated by averaging 203 frames, 

each of which was calculated using an FFT with an 8Oms window on the noise signal. 

It can be seen that a lot of noise power lies in the frequency region below IkHz, were 

most of the power in voiced speech resides. 

All sets of noise-contaminated speech data were pre-processed using the wideband 

filterbank and the output period markers were generated automatically from the 

laryngograph signal. 

8.3.2 Training the networks 

Two separate networks with the same structure were trained for operation in the two 

different noise conditions. The training of these MLP networks was performed using 

10 passes over the input data with learning parameters a = 0.9 and = 0.05. The 

weight changes were made after each pattern presentation, and all in all about 3 million 

pattern presentations were made. The MLPs were then trained using the Pattern 

Processing System described in appendix A.l, which was written in 'C' and ran under 



Unix on a Masscomp MC5600 series computer. The training took several weeks. The 

error signal generated during training was used to gauge the completion of training (this 

was the normalized rnean-square error between the targets and the MLP output averaged 

over all the training data). 

The network trained on the 2WB SNR training speech was used to generate output for 

inputs from the 20dB SNR test speech, and the network trained on the 0dB SNR speech 

was used to generate output for inputs from the OdB SNR test speech. The location of 

the period markers were determined from the MLP outputs by simply locating the local 

maximum peaks in the output signal that exceeded a threshold set at 0.5 (the midway 

point between the 0.0 and 1.0 values that can be generated by the MLP). In addition, 

a minimum period criterion was set, which avoided the generation of spurious pulses 

close to the main marker by setting the minimum detectable period to 2ms (which 

corresponds to a maximum fundamental frequency of 500Hz). 

8.3.3 Qualitative evaluation of results 

The discussion of performance presented in this chapter is intended to give an initial 

indication of the operation of the algorithm. The results from these preliminary 

experiments are first given in terms of visual examination of the output from the MLP 

network and of frequency contours generated from its period-by-period excitation speech 

estimates. Two quantitative comparisons were then made. More rigorous quantitative 

comparisons were discussed in chapter 6 and results using these techniques are given 

in chapter 9, in which a much wider set of environmental conditions and speakers are 

investigated. 

Trace C in figure 8.11 shows the output of the MLP-Tx algorithm operating on a sample 

of test speech at a 20dB SNR which is shown in trace A. Trace D shows the period 

markers from the reference algorithm using the laryngograph waveform, shown in trace 

B. It can be seen that there is good correspondence between this reference and the 

output from the MLP-Tx algorithm. Trace E shows the period markers that can be 

obtained from the MLP-Tx output by detecting its peaks. Trace F shows the output of 



the peak-picker algorithm (discussed in chapter 4), which is shown because it is the 

fundamental period estimation algorithm used in the EPI signal processing hearing aid 

that the MLP-Tx algorithm will replace. It can be seen that extra period markers are 

inserted in those regions where the speech signal exhibits pronounced secondary peaks 

in a period. 

Trace C in figure 8.12 shows the frequency contour generated from the output of the 

MLP-Tx algorithm operating on the 20dB SNR speech shown in trace A. For the 

purpose of comparison, the frequency contour for the reference laryngograph algorithm 

and the peak-picker algorithm are shown in traces B and D respectively. Both the MLP- 

Tx and peak-picker frequency contours correspond to the reference quite well. The 

effects of the reduced sampling rate of 2kHz can be seen in the coarser quantization of 

the MLP-Tx contour than those due to the reference or the peak-picker. 

Figure 8.13 shows the output from the MLP-Tx algorithm operating on the OdB SNR 

speech signal. The first window shows the noisy speech pressure waveform. The 

second window is its 300 Hz bandwidth spectrogram. The third window shows the 

corresponding laryngograph waveform. The MLP-Tx output is given in the lowest 

window. It can be seen that performance is relatively unaffected by the additive canteen 

noise. 

In figure 8.14 a section of figure 8.13 is shown with the time scale expanded to give a 

better close-up view of the output from the MLP-Tx algorithm. 

Trace C in figure 8.15 shows the frequency contour generated from the output of the 

MLP-Tx algorithm operating on the 0dB SNR speech shown in trace A. The frequency 

contour for the reference laryngograph algorithm and the peak-picker algorithm are 

shown in traces B and D respectively. The MLP-Tx frequency contour again follows 

the reference quite well, whereas the peak-picker shows poor performance with the noisy 

speech, not only in the period marker estimates, but also in the voiced/unvoiced 

discrimination. 



8.3.4 Quantitative evaluation of results 

Two quantitative comparisons were carried out on the output fundamental periods 

generated by the MLP-Tx algorithms and the peak-picker. The methods used for these 

comparisons were fully described in chapter 6. They were also reported by Howard & 

Howard (1986). 

The first comparison involved calculating the receiver operating characteristic, or ROC 

(Levine & Schefner, 1981), for both the MLP-Tx algorithm and for the peak-picker. 

This is a plot of the number of false alarms (incorrectly generated period markers) 

against the number of hits (correctly generated period markers) generated by a given 

detector as its detection criterion is swept between lax (that is hits are never missed, but 

false alarms are detected) and harsh (that is, false alarms are never generated, but some 

hits are not detected). In the case of the MLP-Tx algorithm this corresponds to 

changing the pulse detection threshold between O and 1. Figure 8.16 shows the ROCs 

for the MLP-Tx algorithm (marker A) and for the peak-picker (marked B) respectively, 

both operating on the 20dB SNR speech. The higher curve for the MLP-Tx algorithm 

indicates that it is a better detector of the period marker than the peak-picker (these 

ROCs were only calculated for a small portion of the test data, because of a limitation 

in the earlier analysis programs. However, the form of the ROCs obtained for different 

portions of the data all showed the same trends as indicated in figure 8.16). 

The second comparison involves calculating the "jitter" in the placement of the period 

markers by the test algorithm relative to those generated by the reference laryngograph 

algorithm. The results are presented as histograms of the jitter for all the periods that 

have corresponding test and reference markers. Figure 8.17 shows the jitter histograms 

for all the Rainbow test data at both 20dB and OdB SNRs. Plots A) and C) show the 

results for the peak picker and MLP-Tx algorithm respectively, operating on the 20dB 

SNR speech. Similarly, plots B) and D) show the results in the case of OdB SNR 

speech. It can be seen that the distribution due to the MLP-Tx algorithm is narrower 

than for the peak-picker, and it is no wider in the OdB SNR case than in the 20dB SNR 

case. The distribution due to the peak-picker is wider than that for the MLP-Tx 



algorithm in both cases, and shows degradation between the 20dB SNR and the OdB 

SNR conditions. 

The results from the ROC indicate that on the test database used, the MLP-Tx algorithm 

performs firstly as a better detector (one average) of the excitation marker events, 

although this measure does not take their exact location into account. The jitter 

histograms indicate that it was a more accurate (on average) detector of the excitation 

points in the speech than the peak-picker. Notice that this result was achieved even 

though there was a limit on the time resolution from the MLP-Tx algorithm of OSms, 

whereas the peak-picker operated to a O.lms resolution determined by the lOkHz 

sampling rate of the speech waveform. 

8.2.5 Conclusions on preliminary result. 

The results obtained were found to be encouraging. Although these were only 

preliminary experiments, they indicated that useful results could be obtained using this 

new approach to speech fundamental period estimation. It was after this initial set of 

results had been collected that the MLP-Tx algorithm was considered to be of potential 

value in a fundamental frequency extracting hearing aid. However more experiments 

were needed in order to prove the generality of the approach, because there were several 

limitations to the preliminary experiments. Some of the main limitations were as 

follows: 

l] The training and testing data was only composed from speech from men. It was 

clearly necessary to include speech from women in any future experiments. 

21 The same speakers were used for testing and for training. To  avoid any possible 

advantage to the algorithm by enabling it to adapt to the training speaker, different 

training and testing speakers should be used in future experiments. 

31 The filterbank used was a first attempt at a pre-processing system, and this stage 

certainly needed greater analysis and investigation. 



41 The structure used for the MLP network was found by mal and error on a limited 

amount of data and different MLP structures needed to be quantitatively investigated. 

51 The output frame duration of 0.5ms precludes the use of the algorithm in many 

applications, simply because the quantization error associated with this frame duration 

was too large. It must be noted, however, that this degree of temporal resolution was 

suitable for use in signal processing hearing aids, because the users of such aids 

typically have reduced frequency discriminative abilities (see chapters 1 and 3) and a 

severely reduced frequency range (typically only up to lkHz or less). 

All of these limitations as well as other issues are discussed more fully in chapter 9. 

In addition, the MLP-Tx algorithm needed to be compared against other established 

algorithms. Chapter 6 provided a discussion of techniques for making quantitative 

comparisons among fundamental frequency and fundamental period estimation 

algorithms. Some of these techniques are used to evaluate the different configurations 

of the MLP-Tx algorithm which arose from this present phase of the work, and other 

algorithms (chapter 9). 
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Figure 8.1 Voicing determination by envelope detection of the laryngograph waveform. 

It can be seen that the onset and offset of voicing can become smeared using this 

approach. This is particularly evident between the two voiced regions, where the 

envelope detector output slowly drops down and rises again. The speech is the utterance 

/afa/ from a male subject. 
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Figure 8.2 Schematic diagram for the JSRU 19-channel vocoder. 

A modification of this system was used as the pre-processing filterbank in the early 

configurations of the MLP-Tx algorithm. 
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Figure 8.3 Receiver operating characteristics for voicing estimation 

on anechoic speech. 

algorithms operating 

Curve A is the ROC for a Bayes' classifier for Gaussian patterns with one vocoder 

frame in the input vector. Curve B is the ROC for a MLP with no hidden units and one 

vocoder frame in the input vector. Curve C is the ROC for the MLP using three 

adjacent vocoder frames in the input vector, both with and without hidden units. In the 

last case, hidden units did not improve the performance. 
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Figure 8.4 Receiver operating characteristics for voicing estimation algorithms operating 

on speech with additive white noise at OdB SNR. 

Curve A is the ROC for a Bayes' classifier for Gaussian patterns with one vocoder 

frame in the input vector. Curve B is the ROC for a MLP with one layer of hidden 

units and one vocoder frame in the input vector. Curve C is the ROC for a MLP in 

which the input vectors employed a frame of smoothed vocoder input over a lOOms 

averaging window in addition to a normal vocoder frame. Curve D is the ROC for the 

MLP using adjacent input frames, and using hidden units. It can be seen that the 

MLP with adjacent vocoder frames and hidden units gave the best overall performance. 
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Figure 8.5 Wideband spectrogram (300Hz bandwidth) for a short section of male 

speech. 

This illustrates the vertical striations that correspond to the periodic acoustic excitations 

resulting from the snapping together of the vocal folds. The utterance is /aga/ from a 

male subject. 



Figure 8.6 Input and output signals for initial wideband filterbank MLP-Tx algorithm 

Plot showing speech pressure waveform (trace A) and corresponding laryngograph signal 

(trace B). The output from the 9-channel wideband filterbank is shown in trace C. The 

fundamental period estimates obtained from the l a y  gograph are shown in trace D. The 

utterance is "..too many.." from a male subject. 
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Figure 8.7 Very first output generated by the MW-Tx algorithm. 

The top trace shows the input speech pressure waveform and the lower traces shows the 

MLP-Tx output. 
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Figure 8.8 Schematic diagram of the MLP-Tx algorithm used for the first experiments 

employing a moderately sized database. 
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Figure 8.9 Overall system schematic diagram for the various stages in the MLP-Tx 

fundamental period estimation system 

The first stage consists of input condition, which encompasses the microphone, anti- 

aliasing filtering and digitization of the input speech pressure waveform. The next stage 

pre-processes the raw input signal, to give an input suitable to be used as the input to 

a pattern classifier. Next the pattern classification transformation is applied, which 

results in a raw estimate of the vocal fold closures. Finally, the output is cleaned up, 

and converted into the overall output format by a post-processing stage. 
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Figure 8.10 Power spectrum for the canteen noise. 

The input was filtered at filtered at 5kHz. An FFT window size of 80ms was used and 

203 frames were averaged to generate the spectrum. 
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Figure 8.12 Plot showing the frequency contour from the MLP-Tx algorithm on 20dB 

SNR speech. 

Trace A shows the speech pressure waveform at a 20dB SNR. The reference frequency 

contour is shown in trace B, the frequency contour from the MLP-Tx algorithm is 

shown in trace C and the frequency contour from the peak-picker is shown in trace D. 

The quantization error due to the 2kHz output frame rate is clearly visible in the output 

due to the MLP-Tx algorithm. The utterance shown is "The rainbow is a division of 

white light into many beautiful colours" from a male subject. 



Figure 8.13 Output from the MLP-Tx algorithm operating on speech with added canteen 

noise at a OdB SNR. 

The MLP-Tx output is shown in the bottom trace. The second trace shows a wideband 

spectrogram of the input speech, with the laryngograph waveform shown below it. The 

utterance shown is from a male subject. 
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Figure 8.14 Same as in figure 8.13, but with an expanded time-scale. 
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Figure 8.15 Frequency contour from the MLP-Tx algorithm operating in the presence 

of "canteen noise" at a OdF3 SNR. 

The noisy speech pressure waveform is shown in trace A. The reference frequency 

contour is shown in trace B, the MLP-Tx frequency contour is shown in trace C and the 

frequency contour from a peak-picker is shown in trace D. It can be seen that the 

performance of the peak-picker is more affected by the noise than is the MLP-Tx 

algorithm. The utterance shown is "..two ends apparently beyond the horizon" from a 

male subject. 
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Figure 8.16 Receiver operating characteristic for the MLP-Tx algorithm and the peak- 

picker. 

The ROC for the MLP-Tx algorithm is curve A, and that for the peak-picker is curve 

B, both operating on speech at a 2WB SNR. These curves indicate that the MLP-Tx 

algorithm performs as a better detector on the test data than does the peak-picker. 
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Figure 8.17 Jitter histograms for the MLP-Tx algorithm and the peak-picker. 

Ideal performance would be represented by a single bar at zero deviation. Graphs A and 

B are for the peak-picker, and graphs C and D are for the MLP-Tx algorithm, in 20dB 

and OdB SNR conditions respectively. Notice that the MLP-Tx algorithm is less 

affected by noise than the peak-picker. 



CHAPTER 9: MORE DETAILED DISCUSSION OF ISSUES IN SPEECH 

FUNDAMENTAL PERIOD ESTIMATION USING PATTERN CLASSIFICATION 

9.1 LIMITATIONS OF PRELIMINARY EXPERTMENT 

9.1.1 Preliminary experiment 

The initial results showed that the MLP-Tx system performed creditably on the noisy 

speech used in the experiment and better than the single alternative time-domain system. 

However more experiments were needed in order to prove the generality of the 

approach, because there were several limitations to the preliminary experiments. Some 

of the main limitations were as follows. 

9.1.2 Limitations in the testing data 

In the preliminary experiment, the training and testing data were only composed of adult 

male speech. It was clearly necessary to test the algorithm on speech from women. In 

addition, the same speakers were used for testing and for training. To avoid any 

possible advantage because the MLP-Tx algorithm adapted to the training speakers, 

different training and testing speakers should be used in future experiments. The speech 

in the original experiments was recorded anechoically and was therefore free from the 

effects that reverberation introduces. In addition, the speech was recorded at a constant 

fixed distance of 15cm from the speaker's lips. In real use (for example, in the EPI 

hearing aid) the MLP-Tx algorithm would have to function in reverberant conditions at 

a range of distances from the speaker. 

9.1.3 Lack of optimization of MLP-Tx parameters 

The MLP-Tx algorithm had not been rigorously investigated especially with respect to 

the pre-processing employed. The filterbank used was a first attempt at a pre-processing 

system, and needed greater analysis and investigation. 



9.1.4 Limited out put period marker time resolution 

The output frame duration of 0.5ms precluded the use of the algorithm in many 

applications, simply because the quantization error associated with this frame duration 

is too large. It must be noted that this was suitable for use in signal processing hearing 

aids, because such patients have poor frequency difference limens. 

9.1.5 Organization of this chapter 

This section f m t  describes the issues concerning the requirements of a new database. 

This involves the specification of the speech material and its recording conditions, as 

well as the important issue of the alignment of the speech and the laryngograph signals. 

Next the pre-processing stage in the MLP-Tx algorithm is considered in more detail and 

several schemes are described. The training of the MLP is then considered, and two 

schemes to reduce training times are used. Finally quantitative frequency contour 

comparisons, described in chapter 6, are used to compare different configurations of the 

MLP-Tx algorithm against two established techniques. 

9.2 DATABASE CONSIDERATIONS 

9.2.1 Required range of speech and speakers. 

In order to both train and then rigorously evaluate the MLP-Tx fundamental period 

estimation algorithm, it was necessary to have a set of speech data that were 

representative of the kind of data that will be typical in the real use of such an 

algorithm. Consequently a wide range of samples were required from both men and 

women. 

9.2.2 Choice of reading passages 

It is important to take into account the amount of time and effort involved in obtaining 

the database, since there was not unlimited time or resources available for this task. By 



using reading passages, the recording sessions could be kept relatively short and 

undemanding on the speakers. Continuous interactive discourse would have been a more 

realistic situation, but with this approach it would be more difficult to get a good 

coverage of the phonetic range of the speaker. To achieve a good coverage of different 

speech sounds, speakers were asked to read two phonetically balanced passages, the 

Rainbow passage (Memlstein, 1977) and Arthur the Rat (Abercomie, 1964). The 

passages were divided into paragraphs that lasted about 15 seconds each. This was done 

so that there would be natural break-points in the recordings that would aid loading them 

into separate data files on the computer system. 

9.2.3 Selection of recording environments 

In addition to having a database that was representative of variations in speech between 

different speakers, it was also important to represent a wide range of environmental 

conditions and for the recordings to contain natural reverberation and background noise. 

To achieve this aim, the speech was recorded in five typical rooms, which were chosen 

to provide a good range of reverberant conditions. There was also to be some 

background noise present in these recordings. The distance between the speaker and 

microphone was also varied between about 30cm and 200cm, since these reflect the 

typical range of operation for the SiVo hearing aid during use. 

9.2.4 Time delay between speech and laryngograph signals 

The reason for recording the laryngograph signal is so that the speech pressure 

waveform can be labelled with excitation period markers, for the purpose of training and 

testing the MW-Tx algorithm. 

With regard to the training data for MLP-Tx algorithm, it is essential that these markers 

always correspond to the same point in a speech cycle, because this algorithm explicitly 

detects these points. That is to say, it is important that there is a constant delay (which 

is ideally zero, but any small offset, less than about lms, is acceptable) between the 

excitation period marker and the excitation point in each speech cycle. If this was not 



the case, the training data would not uniquely define the relationship between the 

excitation point in the speech pressure waveform and the peak differential in each 

laryngograph cycle. Consequently , the training data would have been contradictory and 

the MLP-Tx algorithm would not train properly. 

For the testing data, a less precise alignment can often be tolerated, because it  is the 

distance between excitations that is generally important, rather than their absolute 

locations. This is particularly true if the output fiom the MLP-Tx algorithm is converted 

to a fixed rate sampled frequency contour, since this loses all the information concerning 

the exact period marker locations. 

Because the laryngograph records the activity of the vocal folds by direct electrical 

measurement and the speech signal was recorded after it had propagated though the air 

over a distance between 30cm and 200cm, there was always a significant time delay 

between the speech signal recorded at the microphone and the corresponding 

laryngograph signal. 

It was always necessary to compensate for this delay, because it changed with recording 

distance, so that the delay corresponding to different speakers, each of which was 

typically recorded at a different distance, was different. 

9.2.5 Effect of head movements 

For a sampling rate of 8kHz, taking the speed of sound as 340ms-l, a time delay 

between the laryngograph signal and the speech signal equal to a single sample period 

corresponds to a distance of: 

It is quite possible that the speaker could move by a distance of 4.25cm away or 

towards the recording microphone in the course of reading the passages. Under these 

circumstances, there would be a detectable delay that was a function of time. Although 



it is possible to use dynamic time warping to compensate for cases in which the time- 

delay is a function of time (as described in chapter 6), it is very much easier to 

compensate for the delay (and the result are more reliable) if it constant. 

9.2.6 Original experiment 

In the preliminary MLP-Tx experiment, using a frame rate of 2kHz, one frame 

corresponded to a distance of 

It is clear that the movement of the head is less critical at this frame rate. Indeed, 

problems relating to the alignment of the speech never arose in the preliminary 

experiments because the recordings were carried out with the speaker in a chair with a 

head rest and using a fixed 15cm microphone distance from the speaker's lips. In this 

case, the 17cm was also sufficient to take account of the differences in the lengths of 

the different speaker's vocal tracts. 

9.2.7 Recording speech and laryngograph data with a fixed time delay between the 

two signals 

To insure that there was a constant delay (or at least constant enough for changes to be 

insignificant compared to a sampling period at the 8kHz rate) between the speech 

pressure waveform and the laryngograph signal for the training data, the speech and 

laryngograph signals were recorded with a microphone that was attached to a fishing rod 

that was fitted into a helmet that the speaker wore. In this way, head movements had 

no effect on the time delay between the speech and laryngograph signal, because the 

microphone was always a constant distance from the speaker. 

9.2.8 Selection of number of speakers 

Finding willing subjects for the purpose of the generation of a database was a difficult 



and time consuming operation. Altogether around 80 speakers were recorded, which 

provided a large pool of testing and training data, and also permitted several poor 

recordings to be discarded (sometimes it was difficult to get good laryngograph signals, 

and this was only fully evident after the data had been acquired onto the computer 

system for a full analysis). 

9.2.9 Training, preliminary testing and final testing data sets. 

Three separate data sets were needed to both train and test the MLP-Tx algorithm. 

Firstly, it was necessary to use different speakers for the training and testing of the 

MLP-Tx algorithm. Secondly, because the algorithm was optimised in the course of its 

development by evaluation on test data, it was necessary to ensure that there was a final 

previously unseen set of testing data (no used for optimization) against which the 

optimised MLP-Tx algorithm could be compared against established techniques. This 

avoided any bias towards the MLP-Tx algorithm it may have had due to adaption of its 

performance to the preliminary testing data. A list of the speakers, their ages and the 

recording conditions appear in appendix A.7. Frequency distributions for the training 

and final test data appear in appendix A.8. 

9.2.10 Training data 

The training data set was composed of 4 men and 4 women speakers, each of whom 

read the Rainbow Passage and the Arthur the Rat passage. The reason that only 8 

speakers, with a large amount of data per speaker were used is because it was very 

important to be able to guarantee that the speech and laryngograph signals were 

accurately time aligned, and this could only be checked using the consistency of 

alignments between different files for the same speaker recorded at the same distance. 

If many separate speakers had been used, with only a small amount of data per speaker, 

it would not have been possible to check alignment in this way. 

9.2.11 Preliminary testing data set 



The preliminary evaluation testing data set consisted of 10 men and 10 women. For 

each speaker, both the Rainbow Passage and the Arthur the Rat passages were recorded, 

but only one paragraph was actually used. Treating the men and women as two separate 

groups, the paragraphs were selected such that the first paragraph were used for the first 

speaker, the second paragraph for the second speaker, etc, until all the speakers were 

accounted for. This achieved coverage of most of the material in the passages, without 

any paragraphs being repeated. 

9.2.12 Final testing data set 

The final testing data set consisted of 20 men and 20 women speakers. Only one 

paragraph per speaker was used, and these were rotated to achieve maximum coverage 

of the passages. 

9.3 INPUT SIGNAL CONDITIONING AND RECORDING O F  THE DATABASE 

9.3.1 Recording the test databases 

The microphone used for the testing recordings was a B&K 4134 condenser omni- 

directional pressure microphone (standard type) fitted in a B&K sound pressure meter. 

The microphone was mounted on a tripod and could be raised and lowered to between 

100-200cm from the ground to give a range of different microphone heights. The output 

was calibrated to 94dBA at 1kHz using a B&K calibrator. The output from a 

laryngograph was also recorded on the other channel. Recordings were made using a 

Sony DAT recorder, with 16-bit resolution at a 48kHz sampling rate. The levels for the 

recordings were left fixed after initial setting up from the calibrator, thus giving an 

absolute calibration level. 

Training data was recorded using a small high quality Knowles BL-1785 piezo-electric 

microphone at a constant distance from the speaker, for reasons previously discussed. 

The frequency response of the microphone was flat within +ldB over the range 40Hz- 

lkHz, and to within f3dB over the range of lkHz to 8kHz. 



The output signal from the given microphone was fed via a pre-amplifier into a 3rd 

order Bessel high-pass filter with a 50Hz cut-off frequency, to remove low-frequency 

noise. This was necessary because there was significant noise power present below 

50Hz which would otherwise lead to problems with dynamic range at the A/Ds. To 

achieve minimum phase distortion, a Bessel filter was used instead of a Buttenvorth 

filter. The input conditioning is illustrated in figure 9.1. 

9.3.2 Choice of sampling rate for digital acquisition 

The data was acquired directly from a DAT recorder onto the MASSCOMP computer 

using a 12bit A/D converters operating at 8kHz in conjunction with 4-pole Buttenvorth 

low-pass anti-aliasing filtering at 3.5kHz. A sampling frequency of 8kHz constituted 

the lowest practical rate at which the intelligibility of the speech could be preserved. 

In addition it is about the lowest acceptable time resolution of the period markers that 

are of general use. More importantly, it is also the sampling frequency adopted by 

telephone companies. As a consequence of this, A/D and DIA converters that operate 

at this frequency are easily available and significantly cheaper than those that operate 

at (for example) IOkHz. For practical implementations, such as in the EPI hearing aid, 

an 8kHz sampling rate is an practical and economically sensible choice. For example, 

one such device that performs the required function is the 16-bit sigma delta linear 

Codec chip AD28MSP02, available from Analog Devices. The data was acquired in 

sections of about 15 seconds length, which was possible because pauses had been left 

between groups of sentences in the passages. The level was set up to make use of the 

full 12bit range of the A/D converters. The passages were placed into a set of SFS files 

(Huckvale, 1988) to facilitate further signal processing and manipulation. 

9.3.3 Automatic alignment of the speech and laryngograph signals 

An automatic and highly reliable method was devised to align the speech and 

laryngograph signals in the training data that did not require any distance measurement 

to be made between the speaker and recording microphone. The first stage involved in 

this alignment was the estimation of the period markers derived from the laryngograph 



signal. These markers were aligned to correspond to the speech pressure waveform 

using a two stage process. 

9.3.4 Initial bootstrap alignment 

In the first phase of the alignment procedure, the peaks of one speech file, corresponding 

to one particular distance, were found using the peak-picker algorithm (Howard & 

Fourcin, 1983). A linear alignment program then calculated the cross-correlation of 

coincidences of all the period markers from the reference and peak-picker algorithms for 

a range of positive and negative offsets. The correlation peak was found automatically 

and its location corresponded to the time-shift between the peak differential in the 

laryngograph cycles and the peaks in the speech. Notice that this is the same procedure 

described in chapter 6 to align reference and test period marker with a constant time- 

shift between then. This was then used to time-align the reference period markers. This 

provided one file of appropriately aligned training data for the MLP-Tx algorithm, and 

a direct speech MW-Tx algorithm (description given later) was initially trained upon 

this. Period markers generated by the partially trained MLP-Tx algorithm were used to 

align the speech and the laryngograph on ALL the training speech data. This ensures 

that all the training data is aligned self-consistently to within 1 sample at the 8kHz 

sampling rate. This procedure has been found to be very successful. 

9.3.5 Checking speech polarity 

A vital issue concerning the alignment of the speech and the laryngograph signals is that 

of speech polarity. It was very important that the speech polarity is self-consistent for 

all the recordings, because otherwise the alignment could not be performed. Observation 

of the speech pressure waveform alone is not sufficient to guarantee speech polarity. 

In addition, it is also not possible to use the quality of the frequency estimates from the 

MLP-Tx algorithm to reliably estimate speech polarity, although it does often exhibit 

a preference for speech of the same polarity for which it was trained. However 

particularly in the initial boot-strap alignment stage, when the MLP-Tx algorithm was 

not fully trained, it was not always easy to determine polarity on the basis of the 



frequency contours. This is illustrated in figure 9.2. One manifestation of speech 

inversion is the location of the period markers. This is illustrated in figure 9.3. There 

is a significant shift in marker location depending upon speech polarity. This 

phenomenon can be used to give a very clear indication of speech polarity if the cross- 

correlation alignment procedure is applied to MLP-Tx period markers found using both 

polarities. The cross-correlation for the correct polarity showed a much more distinct 

correlation peak than for the incorrect polarity. This is illustrated in figure 9.4. Notice 

that the difference shown in this figure is considerable, even though the correponding 

frequency contours showed little difference. The correctly time aligned speech, 

laryngograph and MLP-Tx output signals are shown in figure 9.5. 

9.4 USING DIFFERENT PRE-PROCESSING SCHEMES 

9.4.1 The task of the pre-processing stage 

The input vector to a pattern classifier should be chosen such that it contains the 

information necessary to permit the desired discrimination to be carried out. In addition, 

the data should be represented in such a way that aspects of the signal of importance in  

discrimination are emphasised as much as possible, whilst at the same time information 

that is not required for the discrimination should be suppressed. Three different pre- 

processing strategies were investigated. The speech was either used directly after a 

linear scaling, after processing by a wideband filterbank (similar to before) or after 

processing by an auditory filterbank. Figure 9.6 illustrates the different pre-processing 

schemes used. 

One problem with the original design for MLP-Tx was that the location of vocal fold 

closures in time were too imprecise for many applications. There is naturally a 

compromise between the amount of processing required and the time resolution. 

Adopting a brute force approach, increasing the resolution by a factor N results in an 

input vector with N times as many elements, for a given time window width. In 

addition, it increases the number of frames in a given unit of time of the input  data by 

a factor N. Consequently there is an increase of computation in the classifier by a factor 



of NZ. The computation is also proportional to the number of output channels generated 

by the pre-processing scheme. Using direct speech input only generates a single output 

channel. In this case, using the full sampling rate of 8kHz without decimation is not too 

computationally expensive, because there is only one input channel. Using a high input 

sampling rate posses much more of a problem in computational terms when the 

filterbanks are used for pre-processing, because they give rise to multiple output 

channels. For this reason, the full 8kHz sampling rate was only investigated on the 

direct waveform pre-processing configuration. 

The input pattern vectors were generated from a contiguous number of frames from the 

input data. The two parameters that specify the vector generation are the number of 

frames in the window and the offset location from the beginning of the window at which 

the output target occurs. 

9.4.2 Symmetrical input window 

The window was chosen with regard to the minimum useful To value that would be 

encountered in the speech signal, and with regard to the computational load. It is a 

reasonable assumption to make that for the window to operate satisfactorily it will have 

to give evidence of at least one period at a time within it, and preferably more. 

Assuming good operation for lOOHz and higher frequencies, this set a minimum 

symmetrical window size of 20ms. 

9.43 Asymmetric input window 

If the offset of the observation window is asymmetric, it can incorporate the effect of 

another excitation for lower fundamental periods than a symmetrical window would 

permit. 

Possible advantages of using an asymmetrical window are that one may be able to use 

a smaller window overall than otherwise needed, and secondly it may be possible to 

reduce the time delay from the system if a short look-ahead in time can be used with 



a rather longer look-back in time. The window parameters are illustrated in figure 9.7. 

Tests on the evaluation data showed that a 20ms asymmetric window produced fewer 

chirp (fewer false markers) errors than the equivalent symmetrical window. However, 

the system was a poorer voicing detector (see appendix A.8). 

In all the final results reported in this chapter, a symmetrical input window of 20.5ms 

was used. 

9.45 Direct operation on the sampled speech pressure waveform 

To process the input speech samples directly, the speech was first multiplied by a small 

number (0.001) to scale the values of the speech samples to within the 21.0 range. This 

is necessary because the MLP system used trained best when the range of inputs was 

of the same order as the output range of the sigmoid non-linearity. 

9.4.6 Filterbank to approximate wide band spectrogram 

The filterbank comprised six second order IIR band-pass Butterworth filters with -3dB 

points of 50-300Hz, 300-WHz, W-900Hz, 900- 1200Hz, 1200-2000Hz, 2000-3000Hz. 

The outputs were half-wave rectified, low-pass filtered at lkHz, down-sampled to 2 H z  

and then linearly scaled to the range o f f  1.0. This system was a cut-down version of 

the original filterbank designed to permitted its real-time operation on a portable DSP 

system, and its design is described in chapter 11 (Howard & Walliker, 1989; Walliker 

& Howard, 1990). An example of the output waveforms from this filterbank is shown 

in figure 9.8. 

9.4.7 Pre-processing using an 'Auditory filterbank' 

It is well known that the auditory system performs filtering of the input sounds incident 

on the ears. It was considered prudent to investigate an input filterbank using filters 

with some of the properties of those in the auditory system, because one can be sure that 

they do not discard important information relating to the speech excitation. This can be 



understood because with such an overlap, the overall power in the input signal is 

maintained in the output from the filters. For the purposes of this work, a simplified 

auditory model was used that consisted of a bank of gamma-tone filters, with a 1 ERB 

(equivalent rectangular bandwidth) spacing between their centre frequencies. This is the 

minimum filter density that maintains the information present in the input signal. This 

resulted in 12 fdter channels to cover the required frequency range of 50Hz to lkHz. 

The output from the filterbank channels were then half-wave rectified, low-pass filtered 

at l&, down-sampled to 2kHz and then linearly scaled to a f 1.0 range. This 

filterbank is described by Holdswonh, Nimmo-smith, Patterson & Rice (1988). An 

example of the output waveforms from this filterbank is shown in figure 9.9. A 

comparison of the output from the auditory filterbank and the wideband filterbank is 

illustrated as a grey-level display in figure 9.10. 

9.6 TRAINING THE MLP CLASSIFIER 

9.6.1 Long training times 

The original MW-Tx algorithm took a long time to train, because the MLP algorithm 

needed many iterations over the data-set, each of which required a lot of processing. 

Two techniques were used to speed up the training. 

9.6.2 Adaption of the learning rate and the momentum term 

One such technique is due to Chan & Fallside (1987) and it operates by dynamically 

adjusting the momentum term and learning rate parameters. 

9.6.3 The number of patterns used to estimate weight changes 

In their work, Chan & Fallside used the adaption scheme in conjunction with an 

updating of the weights over the entire training data set whenever practical, or over 

representative sub-sets (batches) of the data for those circumstances wherever such a 

scheme was not practical. The advantage of using the latter procedure is that it is 



possible to make MLP weight changes over a relatively small set of patterns, but ones 

which give a good reflection of the possible range of patterns in the data set. This is 

better than making the update after each pattern, because the latter is not guaranteed to 

give a good gradient descent, and the direction of the weight changes tends to fluctuate 

widely between successive updates, which makes it impossible to use adaptive learning 

rate and momentum term learning schemes. In practice one would not wish to update 

the weights only once per pass of all the data, since this would result in very slow 

learning. This is because it is only possible to alter the weights by a relatively small 

amount per update, and since the time taken to determine each update would be 

relatively large in this case, to perform enough updates to find a suitable solution would 

take a long time. 

9.6.4 Sorting the pattern vectors 

To implement the batch learning, the data pattern vectors used to train the MLPs were 

sorted into representative groups such that each group contained at least one pattern 

corresponding to the presence of a period marker. 

9.7 SELECTIVE EMPHASIS TRAINING OF THE MLP 

Another method to speed up training was to use selective emphasis of the training data. 

This method works by changing the relative emphasis of different pattern vectors, 

depending upon various factors during training, and was developed during the course of 

this work. It operates by scaling the weight changes that result from a given pattern by 

a factor that depends upon the estimated importance of that pattern. The importance of 

the pattern vector is estimated with regard to several considerations. 

9.7.1 Emphasise incorrectly recognized patterns 

It has been found valuable to concentrate the training on the patterns that are falsely 

recognized, and not overwhelm the MLP with less important weight changes from the 

data that is dealt with acceptably. Using this scheme, the network is only trained on 



those patterns it has difficulty with. This can be achieved by making the emphasis 

dependent on the output from the MLP as well as the target pattern class. Thus a 

pattern that results in an output above a preset threshold is made to give rise to weight 

changes which are scaled differently than if the output was below the same threshold. 

In practice three thresholds were employed, one for high output target pattern classes, 

one for low output target patterns and another for uncertain output target pattern classes. 

It is possible to arrange the emphasis such that patterns that give rise to outputs which 

are close enough to the targets are ignored (thus speedmg up program operation). This 

makes it possible to reduce the contribution of certain regions in the training data to 

zero. 

9.7.2 De-emphasis of the importance of boundaries 

In addition to emphasizing patterns that are wrongly recognized, it was found beneficial 

to take less notice of patterns if their precise labelling was not important or even 

uncertain. This was the case in the close vicinity of a period marker. The input patterns 

adjacent to the one corresponding to the excitation marker will be similar. 

Consequently, it is difficult to train the MLP to generate one class (1.0 in this case) at 

this pattern, and the other class (0.0 in this case) immediately around it. However, 

providing the MLP can be trained to generate an output that has a monotonic rising and 

falling transitions around the period marker frame, the fact that adjacent output frames 

from the MLP are non-zero will not be important. 

The use of an uncertain region around the period marker was found to be very important 

and beneficial. The different zones are shown in figure 9.1 1. It can be seen that zone0 

corresponds to an unvoiced signal, zone l corresponds to the pre-period marker uncertain 

zone, zone2 corresponds to a period marker, zone3 corresponds to the post-period 

marker uncertain region and zone4 corresponds to the region in between period markers 

within a voiced segment of speech. The presence of a period marker (zone2) used a 

high MLP target of 1.0, whereas the absence of a period marker (all other zones) used 

a low MLP a target of 0.0. Thresholds of 0.1 for the low zone, 0.85 for the uncertain 

zone and 0.9 for high zones were employed. Notice that normally the class of the 



uncertain zones would be set low (0.1). Using a high threshold here (which means that 

these regions are ignored, unless the output from the MLP is above a value of 0.85, i n  

which case it may compete with the true period marker location as the local maximum. 

In this case, the uncertain region is used, and trained to be of low class. These 

thresholds are illustrated in figure 9.12. 

9.7.3 Faster training with selective emphasis 

The selective emphasis training substantially speeded up the training of MLP networks. 

Using one pattern vector presentation per weight update, there is a speed-up in passing 

through the training data in excess of ten times. With larger numbers of pattern 

presentations per weight updates (such as 1000), there is a speed-up in the passage 

through the data by about three times. This results from the fact that for those patterns 

that are correctly recognised, no back-propagation of error or adaption of the weights 

needs to be carried out. 

The number of excitation markers in the training data used in this work far exceed the 

number of weights in the MLP networks, since the largest network used has about 1620 

weights and there were well over 5 0  period markers in the women training data set. 

9.8 TRAINING DIFFERENT CONFIGURATIONS OF THE MLP-TX ALGORITHM 

9.8.1 Training different MLP-Tx configurations 

The best configurations of the MLP-Tx algorithm were selected from observation of the 

performance of the algorithms on the evaluation data (appendix A.9). Three different 

experiments were carried out, using each of the pre-processing schemes described. In 

each case, the algorithms were only trained and tested on speech from women (results 

on men and women were carried out on the evaluation data set, and appear in appendix 

A.9). In each case, the MLP networks were trained on all the women training data. 

Three passes through the data were made, all using selective emphasis. The f is t  pass 

was made using a weight update after each pattern presentation, with no adaption of the 



learning parameters. The second pass was made using batch learning with 100 patterns 

contributing to weight updates, and employing learning parameter adaption. The final 

pass was the same, but updating weights after 1000 pattern presentations. This strategy 

has been found effective because the initial small updates result in fast training, whereas 

the later larger updates provide a final improvement in the quality of the training. The 

MLP networks used were as follows: For the direct speech experiment, the network had 

161 inputs, 10 hidden units and 1 output unit. For the wideband filterbank, the network 

had 246 inputs, two layers of hidden units each containing 6 hidden units, and 1 output. 

This was the largest network that could be run in real-time on the TMS320C25. For the 

auditory filterbank, the input had 533 inputs, two layer of hidden units each containing 

6 hidden units, and 1 output. All of these network configurations were arrived at by 

consideration to the performance of the MLP-Tx algorithms on the preliminary training 

data. Quantitative frequency contour comparisons illustrating the effect of MLP 

configuration parameters are given in appendix A.9. 

9.8.2 Effect of different updates (patterns per group used for batch learning) 

As discussed in chapter 7, changing the number of pattern vectors used to estimate the 

weight updates before any weight changes are made affects the training of the MLP. 

Essentially, updating per pattern presentation results in the faster initial training, but the 

training is of a higher quality if a larger update is employed. If normal training is 

employed (that is, standard back-propagation), a considerable amount of computation 

time is spent in adapting the weights. Consequently, the training takes longer to pass 

though the training data if the update is small than if it is large, although the overall 

training is faster. Quantitative frequency contour comparisons illustrating the effects of 

altering the update parameters are given in appendix A.9. 

9.9 POST-PROCESSING TECHNIQUES 

9.9.1 Task of the post-processor 

After the output from the MLP in the MLP-Tx algorithm has been generated, it is 



necessary to locate the period markers. The task of the post-processor is to take the 

sampled output waveform from the MLP network, and determine from it discrete events 

that correspond to the period excitation markers. In the preliminary work, this was done 

simple by means of a comparator circuit, with forward and backward inhibition. A more 

sophisticated schemes was also investigated. This involved the use of another MLP-Tx 

algorithm that was trained as before, but this time using the input from another MLP-Tx 

algorithm that worked in the previous fashion by processing the input speech pressure 

waveform. 

9.9.2 Threshold with local inhibition 

The simplest preprocessing scheme is one which simply assigns a frame to a high state 

if the value is greater than a predetermined threshold value. Local inhibition can be 

used to reduce the generation of spurious pulses around the main one. A flow diagram 

to explain the operation of this algorithm is shown in figure 9.13. 

9.9.3 Secondary network continuity classifier 

There is clearly some constraint on the temporal patterning of occurrences of 

fundamental period epoch marker locations. However, it is not always possible or 

desirable to make decisions over a long time-scale. For example, the constraints 

between adjacent fundamental period values are not always that strong, as is in the case 

of creaky voice. In the second instance, there may be a delay in processing that is 

unacceptable, unless only past information is used. 

A method used to take advantage of the temporal patterning of the period markers 

employed another MLP network. Instead of using an MLP with input from the sampled 

speech pressure waveform, the output from a previous MLP-Tx algorithm is used as the 

input. This is illustrated in figure 9.14. This scheme was investigated using the input 

from the wideband filterbank, and there was a reduction in the chirp errors. Results for 

this system are included in appendix A.9. The output of the secondary and primary 

networks is examined in chapter 10. 



An extension of this technique would be to use several different inputs from different 

MLP-Tx algorithms trained to detect different qualities of speech, or trained to operate 

on different speakers or environments. In this case, the secondary classifier must 

perform a data fusion task in order to combine the evidence from the primary extractors 

together to give an overall period marker estimate. 

9.9.4 Generating frequency contours from the MLP-Tx algorithms 

The raw MLP output were then processed to generate period markers. The task of the 

post-processor is to take the sampled output waveform from the MLP network that is 

generated as a function of time, and determine from it discrete events that correspond 

to the period excitation markers. This was done as before by means of a comparator 

circuit, with forward and backward inhibition. The period marker outputs from the 

respective MLP-Tx algorithms were generated on the women testing data, and the 

outputs converted to frequency contours sampled at lOOHz by taking the reciprocal of 

the resulting period values. This format was required to permit comparison between the 

MLP-Tx algorithm and the established techniques. For the comparisons presented here, 

frequency contour comparisons were used, because this is a format that all algorithms 

could generate. Only comparisons on female speech are given. In all cases, the 

laryngograph based algorithms (described previously in chapter 8) were used to provide 

the reference frequency contours. 

9.10 COMPARING BEST MLP-TX CONFIGURATIONS AGAINST ESTABLISHED 

TECHNIQUES 

9.10.1 Standard fundamental frequency analysis techniques for comparison 

Comparisons of the best configurations of three pre-processing configurations of the 

MLP-Tx algorithm and two established algorithms and were made against the reference 

laryngograph analysis system. That is, the best reduced filterbank MLP-Tx algorithm 

that could run on the TMS320C25 was selected, the best auditory filterbank MLP-Tx 

algorithm was selected and finally the best direct speech MLP-Tx algorithm was 



selected. The established techniques chosen for the purpose of comparison were cepstral 

analysis and a peak-picker. The cepstrum algorithm was selected because it is often 

regarded as a standard (chapter 4), whereas the peak-picker was chosen because it is the 

algorithm the MLP-Tx algorithm is intended to replace. These were both described in 

chapter 4. 

9.10.2 Discussion of results 

The results given are the average of the 20 women speakers. Figure 9.15 shows the 

gross error for the six different algorithms. It can be seen that the cepstral analysis 

gives the fewest number of gross errors, and the MLP-Tx algorithm using direct speech 

operation gives the next least. The MLP-Tx algorithm using the auditory filterbank is 

better than with the wideband filterbank. The peak-picker gave the worst performance. 

Figure 9.16 shows the chirp errors for the six different algorithms. The cepstrum gives 

the lowest chirp errors, and the direct speech MLP-Tx algorithm gives second best 

performance. The auditory filterbank MLP-Tx algorithm is again better than the 

wideband filterbank MLP-Tx algorithm. 

Figure 9.17 shows the drop errors for the six different 

algorithms. The lowest error rate is due to the cepstral algorithm. The direct MLP-Tx 

algorithm is again second best. The auditory fllterbank MLP-Tx algorithm is again 

better than the wideband filterbank MLP-Tx algorithm. The peak-picker algorithm gave 

the most drop errors. 

Figure 9.18 shows the standard deviation of the fine frequency differences for the six 

different algorithms. The cepstrum algorithm gave best performance, closely followed 

by the direct speech MLP-Tx algorithm. The two filterbank MLP-Tx algorithms gave 

the worst performance. This is probably because their period estimates were determined 

to a precision of 0.5ms, whereas all the other MLP-Tx algorithm used the 0.125ms 

resolution of the input speech. 



Figure 9.19 shows the voiced-to-unvoiced errors for the six different algorithms. These 

results show that the wideband filterbank MLP-Tx algorithm made the fewest errors, and 

the direct MLP-Tx and the peak-picker were about the same, with the auditory filterbank 

MLP-Tx not far behind. The cepstral algorithm gave the most errors. 

Figure 9.20 shows the unvoiced-to-voiced errors for the six different algorithms. The 

direct MLP-Tx algorithm gave the best results, with the wideband filterbank MLP-Tx 

algorithm next. The peak-picker and auditory filterbank MLP-Tx were about the same, 

with the cepstral algorithm giving the most errors and performing badly. 

9.10.3 Conclusions 

The MLP-Tx algorithm has been shown to be an effective means of speech fundamental 

period estimation. Pre-processing that employed direct operation of the speech pressure 

waveform generally gave better results than using either a wideband filterbank or an 

auditory filterbank. This result supports the statement by Widrow & Lehr (1990) that 

it is often better to let the network classifier develop its own pre-processing rather than 

to try and devise it a priori. 

The performance of the direct speech MLP-Tx algorithm exceeded that of the simple 

time-domain algorithms used for comparisons in all the tests. It also compared 

favorably to the established techniques of cepstral analysis in terms of accuracy and 

gave better voicing determination performance, although its performance in terms of 

gross errors was not quite as good. However, care must be take to compare like-with- 

like, since ceps tral analysis inherently averages frequency values over the analysis 

window (which was 50% wider that of the MLP-Tx algorithm), whereas the MLP-Tx 

algorithm locates the excitation points on a period-by-period basis. 
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Figure 9.1 The input conditioning strategy used for the MLP-Tx algorithm. 
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Figure 9.2 Plot illustrating the effect of speech inversion on frequency contours. 

These contours were obtained from a partially trained MLP-Tx algorithm, and was used 

as a means of speech polarity &termination and time-alignment. The reference 

laryngograph contour is shown in trace A. Traces B and C show the frequency contours 

from the MLP-Tx algorithm with correct and incorrect polarity speech respectively. In 

this example, the performance is poor in both cases, and the c o m t  polarity give barely 

any observable improvement in contour form. It would not be possible to determine 

polarity on the basis of these contours. The utterance is for paragraph ar8 from the 

Arthur the rat passage, from a male subject. 



Figure 9.3 Plot showing the different occurrence times of MLP-Tx period marker 

estimates, depending upon the speech polarity. 

Trace A shows the speech pressure waveform. Traces B and C show an output from 

a partially trained MLP operating on correct and incorrect polarity speech respectively. 

It can be seen that the two sets of locations differ by up to half a period in this case. 

Notice that this order of delay can also arise because of the time-delay between the 

speech and laryngograph signals and is therefore the effects of inversion and &lay could 

easily be confusedTrace D shows the unaligned laryngograph waveform (that is, it is 

shown before alignment with the speech pressure waveform using the period marker 

cross-correlation procedure). Trace E shows the period markers obtained from the 

laryngograph signal. The utterance is the sound /W/ from a male subject. 
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Figure 9.4 Use of the cross-correlation between the reference and MLP-Tx period 

markers as a means of polarity determination. 

This plot is for the same speech passage as shown in figure 9.2. In the top of the 

figure, trace A shows the cross-correlation for the correct speech polarity, whereas trace 

B shows the crosscorrelation for the incorrect polarity. It can be seen that this measure 

gives a clear indication of speech polarity, and provides a reliable method of its 

estimation whereas observation of the frequency contours did not. It simultaneously 

provides the time delay between the speech pressure waveform and the laryngograph 

signal that is need to align them. 



Figure 9.5 Alignment achieved using cross-correlation between the MLP-Tx and 

laryngograph period markers. 

Trace A shows the speech pressure waveform, and trace B shows the output from a 

partially trained MLP-Tx algorithm operating on it. The aligned laryngograph 

waveform and associated period markers are shown in traces C and D respectively. The 

utterance is the sound /v/ from a male subject. 



DIFFERENT PR€-PROCESSING SCHEMES 
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Figure 9.6 Different pre-processing schemes used for the MLP-Tx algorithm. 

The three different approaches involved using the pattern classifier directly on the 

samples time-waveform, on the output from a wide-band filterbank and finally a 

filterbank with filters that share some of the characteristics of auditory filters. 
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Figure 9.7 Different window configurations tested with the MLP-Tx algorithm. 

Window length can be varied. In addition, asymmetrical windows can be used, 

employing either more past or future evidence. 
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Figure 9.8 Output waveforms from wideband filterbank. 

Plot showing speech, laryngograph waveform and corresponding output waveform from 

the six channels of the wide-band filterbank. The outputs from the envelope detectors 

are linearly scaled in this example. The periodicity in the speech pressure waveform is 

evident in output channels. 
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Figure 9.9 Output waveforms from auditory filterbank. 

Plot showing speech, laryngograph waveform and corresponding output waveform from 

the 23 channels of the auditory filterbank. The outputs from the envelope detectors are 

linearly scaled in this example. The periodicity in the speech pressure waveform is 

evident in output channels. 
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Figure 9.10 Diagram showing a piece of input speech and the corresponding wideband 

and auditory filterbank outputs. 

Both are displayed on a grey-level scale. 
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Figure 9.1 1 Definition of the regions around period excitation time markers. 

The labelling of different zones of the training data makes it possible to treat the zones 

differently during training. In particular, the importance of patterns that occurs in zones 

1 and 3, before and after a period excitation marker, can be de-emphasised. 

IDENTIFICATION OF THRESHOLDS AROUND Tx POINT 

Figure 9.12 Identification of thresholds around a period excitation marker. 

These thresholds are used to determine whether or not an output is close enough to its 

target. This operation is used during selective emphasis training of the MLP. For the 

period excitation marker zone, a threshold of 0.9 is employed. For the zones adjacent 

to the period excitation marker zone, a threshold of 0.85 is employed. Elsewhere, a 

threshold of 0.1 is used. 
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Figure 9.13 Flow diagram for the operation of simple threshold with local inhibition 

post-processing algorithm. 
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Figure 9.14 Schematic diagram illustrating principle of using a secondary pattern 

classifier for post-processing. 

The first MLP-Tx algorithm generates an output in the normal way. This is then used 

as the input to a secondary MLP-Tx algorithm, which is trained as before to estimate 

the period markers. 
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RESULTS AVERAGED OVER 20 WOMEN SPEAKERS 

Figure 9.15 Bar-graph showing the gross errors generated by the six algorithms on final 

test data. 

The comparisons were all made against an interactive reference algorithm that makes 

use of the output from a laryngograph. The results shown are the average performance 

over 20 different women speakers, with about 15 seconds of speech per speaker. 



RESULTS AVERAGED OVER 20 WOMEN SPEAKERS 

Figure 9.16 Bar-graph showing the chirp errors generated by the six algorithms on final 

test data. 

The comparisons were all made against an interactive reference algorithm that makes 

use of the output from a laryngograph. The results shown are the average performance 

over 20 different women speakers, with about 15 seconds of speech per speaker. 



RESULTS AVERAGED OVER 20 WOMEN SPEAKERS 

Figure 9.17 Bar-graph showing the drop errors generated by the six algorithms on final 

test data. 

The comparisons were all made against an interactive reference algorithm that makes 

use of the output from a laryngograph. The results shown are the average performance 

over 20 different women speakers, with about 15 seconds of speech per speaker. 



RESULTS AVERAGED OVER 20 WOMEN SPEAKERS 

Figure 9.18 Bar-graph showing the standard deviation of fine frequency differences 

generated by the six algorithms on final test data. 

The comparisons were all made against an interactive reference algorithm that makes 

use of the output from a laryngograph. The results shown are the average performance 

over 20 different women speakers, with about 15 seconds of speech per speaker. 



RESULTS AVERAGED OVER 20  WOMEN SPEAKERS 

Figure 9.19 Bar-graph showing the voiced-to-unvoiced errors generated by the six 

algorithms on final test data. 

The comparisons were all made against an interactive reference algorithm that makes 

use of the output from a laryngograph. The results shown are the average performance 

over 20 different women speakers, with about 15 seconds of speech per speaker. 



RESULTS AVERAGED OVER 20 WOMEN SPEAKERS 

Figure 9.20 Bar-graph showing the unvoiced-to-voiced errors generated by the six 

algorithms on final test data. 

The comparisons were all made against an interactive reference algorithm that makes 

use of the output from a laryngograph. The results shown are the average performance 

over 20 different women speakers, with about 15 seconds of speech per speaker. These 

results show much poorer performance of the cepstrum algorithm than of the MLP-Tx 

algorithms (and the direct speech version in particular). 



CHAPTER 10: EXAMINATION OF MLP-Tx NETWORK FUNCTION 

10.1 EXAMINING MLP OUTPUTS 

10.1.1 Introduction 

This chapter contains a series of observations concerning the operation of the MLP-Tx 

algorithm. The results given in this section are mainly for the direct speech MLP-Tx 

algorithm, rather than for the filterbank versions, because the former generates an output 

at a higher sampling rate. One consequence of this is that it makes visible certain 

phenomena (such as the occasional generation of double pulses at nasal transitions) that 

does not show up as clearly at the lower 2kHz output frame rate (although the effect is 

still present). 

Firstly, the normal output from the MLP-Tx algorithm is examined. Conditions that lead 

to error in the estimation of fundamental period are then discussed and some 

corresponding MLP-Tx outputs for these conditions are shown. Investigation of error 

conditions is valuable because it provides the basis for future developments and 

improvements. 

The patterns of weights are displayed both as time waveforms and as rectangles (in 

which the size and colour represents the weight). The power spectra of some of the 

weight time-functions are given. 

Finally, the activity occurring at the hidden units is examined for normal operation and 

two error conditions. 

10.1.2 Analysis of correct output from the MLP-Tx algorithm 

Figure 10.1 shows a typical output from the direct speech MLP-Tx algorithm in trace 

D and the output from the reduced wideband filterbank MLP-Tx algorithm in trace E. 

Figure 10.2 shows the same on an expanded time-scale. It can be seen that the leading 



edge peak frames of the pulses align with the (delay compensated) period markers 

derived from the laryngograph signal. Notice that the peak is well defined and the 

pulses typically take several frames (at 8kHz) to reach their peak value, and several 

frames to die away again. The pulse width usually corresponds to the number of de- 

emphasised samples around the period marker that was used during the selective 

emphasis training procedure. The pulse width is wider for the filterbank MLP-Tx. 

Figure 10.3 shows the output from the direct MLP-Tx algorithm of irregular speech. 

It can be seen that the excitation points are individually detected by the algorithm. 

10.1.3 Analysis of failures of the MLP-Tx algorithm 

Figure 10.4 shows a case when the response of the direct speech MLP-Tx algorithm is 

poor. The speech is for the token "named" from a female speaker. This example was 

selected from the evaluation test data because it illustrates the main sources of error that 

currently occur with the MLP-Tx algorithm (although is must be noted that this output 

is not typical of the operation of the MLP-Tx algorithm). 

It can be seen that the centre region of the utterance gives rise to double-pulse output 

from the MLP. In addition, at the transition between the vowel and the final nasal 

region (occurring at about 1885ms on the time-scale shown) there is a brief reduction 

of the height of the output pulses from the MLP. From observation of all the evaluation 

data for women speakers, it has been found that the double-pulsing phenomenon is the 

main source of chirp errors generated by the algorithm on women speakers, whilst the 

abrupt reduction in pulse height at nasal transitions is the main source of drop error in 

the algorithm on both men and women speakers. 

Double-pulse generation at transitions 

A close-up of the initial nasal-to-vowel region is shown in figure 10.5, which makes 

visible the occurrence of the MLP output pulses with respect to the (delay compensated) 

laryngograph period marker. It can be seen that during a nasal, there is a tendency for 



the MLP output to be generated with a time-lag of the order of a millisecond behind the 

reference period marker. As the transition proceeds into the vowel, another pulse 

appears that has the correct timing relationship with respect to the reference marker. In 

this situation, it is likely there is as much evidence of the nasal as the oral vowel that 

follows. Finally, after the vowel is fully established, the second delayed pulse 

disappears, leaving only the appropriately located markers. 

False pulses in cycle for male speech 

There are additional chirp errors in the case of speech from men, which can arise at 

secondary peaks in the speech cycles. This is illustrated in figure 10.6 and a close-up 

of the phenomenon is given in figure 10.7. This constitutes the main source of error in 

the MLP-Tx algorithm when it has been trained on male + female, or just female 

speech. 

Reduction in pulse height at transitions 

Figure 10.8 shows a close-up of a transition between a vowel and a nasal that exhibits 

the reduction in  height of the MLP output at the transition. It is believed that this 

occurs because of the miss-alignment in timing around nasal-vowel and vowel-nasal 

transitions. Since the MLP-Tx algorithm tries to generate output pulses in the wrong 

place, during the training phase such outputs are suppressed, resulting in a reluctance 

for the algorithm to respond to at  all in such circumstances. 

Secondary MLP post-processing 

The effect of the form of the output from the MLP-Tx algorithm using the secondary- 

window post-processing technique (discussed in chapter 9) is illustrated in figure 10.9. 

It can be seen that the post-processing has the effect of suppressing unwanted secondary 

pulses. In addition it reduces pulse-width and gives a more uniform pulse height of the 

legitimate pulses. Figure 10.10 shows the MLP output waveforms over an expanded 

time-scale. 



10.2 EXAMINING MLP WEIGHTS 

10.2.1 Weight patterns represented as Hinton diagrams 

To give some indication of how the trained MLPs in the MLP-Tx algorithm are 

organised, the weights are presented in two different formats. Firstly, the weights are 

shown graphically in terms of images in which the values of the weights are represented 

such that weight magnitude is npresented by the size of a square. Positive weights have 

black solid squares, and negative weights have unfilled (white) squares. Secondly, the 

weights are shown as time-waveforms. 

For the original MLP-Tx algorithm (trained on five male speakers), the patterns for the 

weights in layer 1-2 are given in the figures 10.11 and 10.12. The weights for layer 2-3 

and layers 3-4 are given in figure 10.13. 

Observation of the lower layer weights in figures 10.1 1 and 10.12 shows that the 

magnitude of the positive excitatory weights is greatest at the centre of the window and 

just ahead in time of the centre. This suggests that most of the activity in the detection 

process takes place around the centre of the window, where the weights are of the 

largest magnitude. This is not surprising, since the central region in the window is the 

zone that always lines up with the point in the speech data that contains the excitation 

point whenever a pulse to signify an excitation marker pulse is generated. 

10.2.2 Weight patterns represented as time-waveforms 

Figure 10.14 shows the weights in two direct speech MLP-Tx algorithms, each using 

161 inputs and no hidden units. The weights represented in trace A were generated by 

training on the four women and three men whereas the weights shown in trace B were 

generated by training only on women. These traces correspond to the time function that 

is correlated against the speech input to generate the output period markers. Both of 

these waveforms show a large positive to negative transition around the centre of the 

window, although the negative peak is one sample later for the network trained on men 



and women.. 

10.23 Power spectra of the weight time-waveforms 

Normally one would characterise linear filters in terms of their frequency response (both 

in phase and magnitude). The power spectrum for the weight time-function, shown trace 

A in figure 10.15, is given in figure 10.16. It can be seen that the magnitude frequency 

response associated with the weighs is complicated and non-monotonic, although there 

is an attenuation of 20dB at the lowest frequencies. Figure 10.17 shows the first layer 

weight time-functions for the case of a direct speech MLP-Tx algorithm using a M W  

with 161 input and one layer of 10 hidden units (again trained on the four women and 

three men). Figure 10.18 shows the first layer weight time-functions for a direct speech 

MLP-Tx algorithm using a M W  with 161 input and one layer of 5 hidden units, again 

trained on the four women and three men. The corresponding power spectra for these 

weight time-waveforms are shown in figures 10.19 to 10.23. It can be seen that the 

different first layer weights have considerably different time-functions and power 

spectra. In all cases, the attenuation due to the weights is not that great, compared to 

what might be expected from, for example, a normal low-pass filter. That is, the typical 

peak response to minimum response is only about 20-30dB. In all cases, the power 

spectra are complicated functions. 

10.2.4 Internal activations 

To examine the action of the internal nodes in an MLP during its operation to detect the 

period markers, the MLP-Tx algorithm was run in recognition mode and the activities 

at the internal nodes were recorded. 

Normal operation 

The node activity for the original wideband filterbank MLP-Tx algorithm (trained on 

five male speakers) is shown in figure 10.24. The speech pressure waveform (20dB 

SNR) in shown trace A, the reference period markers in trace B, the output from the 



MLP-Tx algorithm in trace C and the internal activations in layer 2 for all the nodes in 

that layer in traces E to M. Certain observations can be made from these traces. Firstly 

it appears that there are some traces with no activity, for example F and H. To be 

conclusive about this would require observations of these node activities over all 

possible input conditions. Another feahm of the traces concerns the timing relationships 

between the traces. It can be seen that some traces go high just before the overall 

output, such as G. Some traces go high just after the output, such as D and E. Some 

traces go low as the output goes high, such as L. Some traces go high just before and 

after the output goes high, trace J. In addition, certain traces appear to be time-shifted 

versions of others. 

Some of the traces in layer 3 (shown figure 10.25) exhibit more similarity with each 

other than do those in layer 2, possibly suggesting that there were more nodes in this 

layer that necessary. 

Internal activation during double pulse error condition 

Figure 10.26 shows the internal activations from the nodes in a direct-speech MLP-Tx 

algorithm with 161 inputs and 5 hidden units (trained on the four women and three men) 

in the training data. Figure 10.27 shows the same example with an expanded time-scale. 

These nodes correspond to the weight functions shown in figure 10.18 and power spectra 

shown in figures 11.19 to 11.23. These internal node activity traces are given for an 

example where double pulses are generated at the transition between a nasal and a 

vowel. The different nodes in the hidden layer generate quite different outputs. During 

the transition, nodes 0, l  and 2 generate almost the same shaped pulses. In fact the 

output from node 2 (trace F) generates an output that corresponds well to the time when 

firm vocal fold closure is made, However, nodes 3 and 4 change and generate more 

regular and narrower pulses as the transition progresses from the nasal into the more 

temporally complex vowel. 

The more slowly varying traces from nodes 0, 1 and 2 have corresponding power spectra 

(figure 1 1.19, 1 1.20 & 1 1.21) that give greater emphasis to the lower frequencies. 



Conversely, the more rapidly varying traces from nodes 3 and 4 have associated power 

spectra that attenuate low frequencies. 
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Figure 10.1 Diagram showing normal response of direct speech MLP-Tx algorithm. 

Trace A shows the speech pressure waveform, trace B shows the corresponding 

laryngograph waveform and trace C shows the marker &rived from it. The output from 

the direct speech MLP-Tx and the reduced filterbank MLP-Tx algorithms are shown in 

traces D and E respectively. It can be seen that there is good agreement with the period 

markers and the MLP outputs. The speech is the utterance "when an man..." from a 

women. 



Figure 10.2 Diagram showing same as figure 10.1, but with an expanded time-scale. 

It can be seen that each MLP-Tx output pulse exhibits only one maximum and that its 

time location coincides with the (aligned) period marker derived from the laryngograph. 

The direct speech MLP-Tx algorithm operating at an 8kHz frame-rate gives better time 

resolution than the reduced wideband filterbank MW-Tx algorithm. The speech is for 

the vowel in "man". 
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Figure 10.3 Diagram showing response of direct speech MLP-Tx algorithm to irregular 

speech. 

The output from the MLP-Tx algorithm shows good agreement with the laryngograph 

output. The speech is from a women. 
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Figure 10.4 Diagram showing strongest erroneous double-pulse response of direct 

speech MLP-Tx algorithm at nasal-vowel transitions. 

The utterance is "named" h m  a women speaker. Trace A shows the speech pressure 

waveform, trace B shows the corresponding laryngograph waveform and trace C shows 

the marker derived from it. The output from the MLP-Tx algorithm is shown in trace 

D. It can be seen that there double pulses are most strongly generated by the MLP at 

the transitions with the initial and final nasal regions, although the effect persists 

throughout the vowel. 
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Figure 10.5 Diagram showing same as figure 10.4, but with an expanded time-scale 

over initial nasal ..'ha.." transition region. 

It can be seen that during the nasal, the MLP-Tx output pulses exhibit only one maxima 

but their time locations are ahead of the (aligned) period markers derived from the 

laryngograph. During the transition, two pulses are generated, the fnst of which does 

align with the reference from the laryngograph. Proceeding into the vowel, the 

secondary delayed pulse dies away. 
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Figure 10.6 Diagram showing erroneous generation of unwanted period marker pulse 

from the direct speech MLP-Tx algorithm on male speech. 

Trace A shows the speech pressure waveform, trace B shows the corresponding 

laryngograph waveform and trace C shows the marker derived fYom it. The output from 

the MLP-Tx algorithm is shown in trace D. It can be seen that erroneous output pulses 

are sometimes generated between the legitimate ones. The speech is the utterance "...in 

the air...". 



Figure 10.7 Same as figure 10.6 with expanded time-scale. 

The erroneous pulses correspond to the secondary peaks in the speech cycles. The 

speech is the utterance "a" from "...in the air...". 
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Figure 10.8 Emneous reduction on MLP-Tx pulse height at nasal-vowel transition. 

This reduction in MLP-Tx output pulse height that sometimes occurs under such 

conditions. Trace A shows the speech pressure waveform, trace B shows the 

corresponding laryngograph waveform and trace C shows the marker derived from it. 

The output from the MLP-Tx algorithm is shown in trace D. The utterance is the 

section "..in.." from "..kindly.." from a female subject. 



Figure 10.9 Effect of using a secondary MLP-Tx algorithm trained on the output from 

a primary (that is, normal) MLP-Tx algorithm. 

Trace A shows the speech pressure waveform, trace B shows the corresponding 

laryngograph waveform and trace C shows the marker &rived from it. The output from 

the primary reduced filterbank and secondary MLP-Tx algorithms are shown in traces 

D and E respectively. It can be seen that there is a tendency to suppress secondary 

pulses, reduce the pulse-widths and produce pulses with more uniform heights. The 

speech is the utterance "...rainbow..." from a male speaker. 



Figure 10.10 Same as figure 10.9 with expanded time-scale. 

The speech is the utterance "ai" from "..rainbow..". 
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Figure 10.1 1 Weight patterns for the original wideband (9-channel) filterbank MLP-Tx 

algorithm. 

The size of the square represents the magnitude of a weight, and positive and negative 

weights are denoted by black and white squares respectively. This network has 369 

inputs, two layers of 10 hidden units and one output. The vertical scale represents the 

9-input frequency channels (0-g), whereas the horizontal scale represents the 41 time- 

frames. The window is symmetrical with the current ftame represented in the centre. 

The threshold weight is shown above channel 08. Nodes 0-4 are shown in this diagram 

for layers 1-2. 





Figure 10.13 Weight diagrams as in figure 10.11, but this time for nodes 0-9 in layers 

2-3. 

Figure 10.14 Weight diagrams as in figure 10.1 1, but this time for output node in layers 
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Figure 10.15 Weights in direct speech MW-Tx algorithms, with no hidden units, 

represented as time-waveforms. 

The network had 161 inputs and 1 output. The weights are represented as the time- 

waveform that is correlated with the input speech and then passed via the sigmoid non- 

linear function to generate the output. Trace A shows the weight waveform for a 

network trained on both men and women. Trace B shows a network trained only on 

women. 
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Figure 10.16 Power spectrum corresponding to the weight time-waveform shown in 

trace A in figure 10.1 5. 
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Figure 10.17 First layer weights for MLPs with 10 hidden units in direct speech MLP- 

Tx, represented as time-waveforms. 

The network had 161 inputs, one layer of 10 hidden units and 1 output. The weights 

are represented as a time-waveform. The network was trained on men and women. 



Figure 10.18 First layer weights for MLSs with 5 hidden units in direct speech MLP- 

Tx, represented as time-waveforms. 

The network had 161 inputs, one layer of 5 hidden units and 1 output. The weights are 

represented as a time-waveform. The network was trained on men and women. 
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Figure 10.19 The power spectrum corresponding to the weight time-waveform for 

hidden node 0 shown in trace A in figure 10.18. 

WC€ l. 161-5-1 MP n e t w r k  weight tlm-function spectral cross-section 

Figure 10.20 The power spectrum corresponding to the weight time-waveform for 

hidden node 1 shown in trace B in figure 10.18. 
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Figure 10.21 The power spectrum corresponding to the weight time-waveform for 

hidden node 2 shown in trace C in figure 10.18. 
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Figure 10.22 The power spectrum corresponding to the weight time-waveform for 

hidden node 3 shown in trace D in figure 10.18. 
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Figure 10.23 The power spectrum corresponding to the weight time-waveform for 

hidden node 4 shown in trace E in figure 10.18. 
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Figure 10.24 The output from the first layer nodes in the original wideband filterbank 

(9-channel) MLP-Tx algorithm. 

This system used an MLP with the configuration 369-10- 10- 1 configuration. The speech 

is the first part of the utterance "seem" from a male speaker, and is shown in trace A. 

Trace B shows the laryngograph waveform and the period marker derived from it are 

shown in trace C. Traces D to M show the MLP node outputs. 
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Figure 10.25 The output from the second layer nodes in the original wideband 

filterbank (9-channel) MLP-Tx algorithm. 

This system used an MLP with the configuration 369-10-10-1 configuration. The speech 

is the first part of the utterance "seem", and is shown in trace A. Trace B shows the 

laryngograph waveform and the period marker derived from it are shown in trace C. 

Traces D to M show the MLP node outputs. 
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Figure 10.26 Output from first layer units in direct speech MLP-Tx algorithm, showing 

double-pulse error condition. 

The network has 161 inputs, one layer of 5 hidden units and 1 output units, and was 

trained on men and women. Speech is shown in trace A, laryngograph waveform is 

shown in trace B and the period markers derived from is are shown in trace C. Trace 

C shows the overall MLP-Tx output and traces D to H show the outputs from the 5 first 

layer nodes. The speech was from a male speaker and was for the transition "na". 
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Figure 10.27 Same as in figure 10.26, but with an expanded time-scale. 



CHAPTER 11: REAL-TIME IMPLEMENTATION O F  THE MLP-TX ALGORITHM 

1 1.1 COMPUTATIONAL LOAD CONSIDERATIONS 

11.1.1 Introduction 

This chapter provides a discussion of the issues and problems involved in implementing 

the MLP-Tx algorithm in real-time on a TMS320C25 signal processor. Many of the 

issues in this chapter represent collaborative discussion and work with John Walliker. 

In particular, the real-time implementation of the MLP-Tx algorithm on the TMS320C25 

was written by John Walliker, with the weights for the MLP provided by the author. 

Firstly, the limitations of the TMS320C25 are described. Next, the processing load 

needed to implement the different stages in the MLP-Tx algorithm were estimated and 

this resulted in a system that could run on the TMS320C25. Results of a simulation are 

given which investigate the effect of quantization of the weights in the MLP, and the 

use of look-up tables to implement the sigmoid non-linearities. Finally, perceptual 

results for patients and normal listeners using a real-time MLP-Tx algorithm are 

presented (the perceptual tests were carried out by Dr. A Faulkner). 

Due to its uniform structure, it is relatively easy to implement a MLP in a real-time 

device. Clearly processing requirements limit the size of the network and filterbank that 

can be used in a real-time system. To this end, the largest network and filterbank that 

could be run in real-time on a TMS320C25 signal processor was estimated and then 

investigated. 

11.1.2 Limitations of the TMS320C25 

For the MLP-Tx algorithm to be useful in signal-processing hearing aids, it must be 

implemented to run in real-time. Such a task requires a large amount of computation 

and consequently a fast digital signal processor was needed. 



To achieve real-time operation of an algorithm, it is necessary that the processing load 

per unit time of input speech is no more than can be achieved per unit time by the 

available processor, and that the output from the algorithm becomes available at a short- 

time after the signal was presented. The latter issue presents no problem, since the 

delay from the MLP-Tx algorithm can be made small (that is, about 10ms). 

11.1.3 Desirability of integer arithmetic and a look-up table 

In a practical portable implementation of the MLP-Tx algorithm, it is advantageous if 

the arithmetic can be carried out by means of integer multiplications. This is because 

integer processors are generally more readily available and use less power than floating 

point ones and this is important when battery operation is required (which it is in a 

hearing aid). Additionally, the use of a look-up table to calculate the sigmoid non- 

linearity is also highly desirable, if not essential, because full calculation of the sigmoid 

is computationally expensive. 

The operations involved in the original wideband filterbank MLP-Tx algorithm included 

the calculation of sigmoid non-linearities and logarithmic compression. To implement 

this by direct calculation on a integer DSP would use a large number of processor 

cycles. A practical solution was to use look-up tables to implement these functions. 

The TMS320C25 was selected (by John Walliker) because it was as fast as other integer 

processor available ,it also had a relatively low power consumption, and at that time 

documentation and support for it were more readily available. 

11.1.4 Limit on computation 

This section shows how the size of a MLP-Tx algorithm that could run on a 

TMS320C25 in real-time was calculated. 

The TMS320C25 run at a 40MHz clock-frequency is capable of 10 MIPs (million 

operations per second). For portable applications there are three considerations that 



reduce this figure to 8 MIPs. Firstly, it is desirable to run the processor on a reduced 

voltage, to minimise battery power consumption. Secondly, the fastest available low 

power EPROMS had an access time that limited the maximum clock speed to 32MHz. 

Thirdly, 32- is a readily available crystal frequency. 

11.1.5 Processor cycles for filters 

The issue of the number of processing cycles necessary to implement the various 

operations in the MLP-Tx algorithms is now addressed. The overheads for the filtering 

constitute a large proportion of the overall number of cycles required to implement a 

second order filter. The DSP applications manual for the TMS320C25 (Texas 

Instruments, 1986) gives an example of a 4th order filter that requires 28 processor 

cycles per input sample. A filter lower in order by one will require one less multiply- 

add and associated overheads. Therefore, a second order filter will need at least 14 

processor cycles per input sample (half the previous figure). Additional operations are 

then needed to implement half-wave rectification and logarithmic output scaling. 

11.1.6 Processing load for previous filterbank system 

The initial system consisted of 9 bandpass filters of 4th order running at an input 

frequency of lOkHz, followed by rectification and smoothing using 2nd order filter. 

Downsarnpling to 2kHz was then carried out followed by a log operation. This required 

at least 9*(28+14+2) = 396 processor cycles every O.lms for the filters and 9 for the log 

look-up. This corresponds to about 4 MIPs, which is 50% of the processor capacity. 

11.1.7 Processor cycles for MLP 

A multiply and add can be carried out within one processor cycle. There are set-up 

overheads associated with the calculation of a unit of about 10 processor cycles. The 

non-linear look-up table required about 10 cycles per node to implement. The delay-line 

shifts required no extra processor cycles. 



The MLP network used 369 inputs and had two layers of hidden nodes each containing 

10 units. This required 369*10+10*10+10 = 3800 multiply-add operations every 0.5ms 

and 20* 10 + 28* 10 = 400 operations per 0.5ms to implement the look-up operations and 

unit initializations. This corresponds to 8.4 MPS. 

11.1.8 Reduced computation filterbank 

Consequently, in its original form, the MLP-Tx algorithm was estimated to use 

approximately 12.4 MPS whereas only 8 MPS were available. To reduce computation, 

the input sampling rate was reduced from the original lOlcHz to 8kHz. This also has the 

beneficial effect that the latter is the telecommunications standard frequency, and 

consequently components at this frequency are readily available and good value for 

money. 

The number of filter channels was reduced to 6. This was achieved by replacing the 

original five highest channels with two channels that covered the same 1kHz-3kHz 

range, because it was believed that this part of the frequency range was less important 

than the lower regions in which the fundamental frequency lies. In addition, the band- 

pass filters were reduced from 4th order to 2nd order. The exact cut-off frequencies for 

the filters were also chosen with regard to the stability of the filters (some initial cut-off 

frequencies resulted in unstable filters). Finally, the filterbank comprised six second 

order IIR Butterworth filters with -3dB points of 40-300Hz, 300-600Hz, 600-900Hz, 

900- 1200Hz, 1200-2000Hz, and 2000-3000Hz. 

To implement this new filterbank required about 6*(14+14+2) = 180 processor cycles 

every O.125ms. This corresponds to 1.4 MPS. 

11.1.9 Reduced computation MLP 

Reducing the filterbank to 6 channels automatically reduced the size of the 

corresponding MLP network. However, it was necessary to additionally reduce the 

number of hidden units in the first layer to 6. The number of units in the second hidden 



layer we= also reduced to 6. Therefore the MLP network used 246 inputs and had two 

layers of hidden nodes each containing 6 units. This required 246*6+6*6+6 = 1518 

multiply-add operations every 0.5ms and 20*10 + 28*10 = 400 operations per 0.5ms to 

implement the look-up operations and unit initializations. This corresponds to 3.8 MPS. 

A schematic diagram illustrating the configuration for the reduced computation MLP-Tx 

algorithm is shown in figure 1 1.1. 

This gives an overall processing load of 1.4 + 3.8 = 5.2 MPS which can be run on the 

TMS320C25 in real-time. In addition, it leaves some spare capacity that is needed by 

other operations that must be implemented in the hearing aid, such as the formatting of 

the output signal, etc. 

11.2 SIMULATION OF HARDWARE IMPLEMENTATION 

11.2.1 Introduction 

To investigate the effects of quantization and the use of look-up tables for the non-linear 

functions, a set of simulation experiments was carried out. This involved performing 

the calculations in the MLP to the specified number of levels of quantization. The 

effect of different size look-up tables was also investigated. 

11.2.2 Investigation into the effects of quantization 

The effect of quantization were assessed on a version of the real-time MLP-Tx algorithm 

that was trained (using a floating point representation of the weights) on the four female 

training speakers (as described in chapter g), and it was then tested on the ten female 

speakers in the evaluation data set. Frequency contour comparisons were then used to 

asses the performance. 

The effect of quantization of the weights is to introduce inaccuracy in their 

representation. To investigate the effect of quantization, all the numbers (weights and 

results) used in the MLP-Tx algorithm were quantized. This was achieved as follows: 



First the sign of the number was recorded and the number set to its positive magnitude 

value. It was then scaled such that the range of numbers used for weights would lie in 

the interval 0 to 1. This value was then multiplied by half the required quantization 

levels, and the number was then rounded to the nearest integer. The number was then 

scaled back to its original magnitude, but now with quantization uncertainty introduced. 

Its sign was then restored. 

11.2.3 Qualitative evaluation of the effect of quantization 

The outputs from the MLP-Tx algorithm for different levels of quantization are shown 

in figure 11.2. Trace A shows the speech pressure waveform and B the corresponding 

laryngograph waveform. Trace C shows the output with no quantization. Trace D 

shows the output with 512 levels of quantization, which is visually the same as the un- 

quantized case. Traces E to J show the output for 256, 128, 64, 32, 16 and 8 levels of 

quantization respectively. It can be seen that fewer than 64 levels of quantization affects 

the height of the output waveform. The output pulses remain well-defined even with 

16-levels of quantization, although unwanted pulses outside the voicing region become 

emphasised. 

11.2.4 Quantitative assessment of the effect of quantization 

The quantitative performance of the algorithm for different levels of quantization is 

shown in figures 1 1.3 to 11.8. 

It can be seen that the performance does not change much until the quantization uses 

less than about 128 levels, and operation using 8-bit resolution is certainly satisfactory. 

It is interesting to notice that the different comparison metrics show different amounts 

of degradation (which demonstrates the value of using all the metrics). For example, 

as the quantization levels go between infinite (unquantized) to 16 levels, the voiced-to- 

unvoiced errors reduce but the unvoiced-to-voiced errors increase. Similarly, the 

frequency contour drop errors reduce and the chirp errors increase - and consequently 

the overall number of gross errors stays almost constant up to 64 levels of quantization. 



The metrics that measure the hit rate and the fine accuracy of the period estimates show 

less degradation than some of the others, and the hit rate actually increases with 

decreasing quantization levels, until the 8-level point is reached. For 8 levels of 

quantization, most of the metrics indicate degraded performance. 

11.25 Investigation into the effects of using a look-up table 

To investigate the effect of using a look-up table, the sigmoid non-linearity in the MLP 

was replaced with an appropriate look-up table and a level clipping function. That is, 

if the input was greater than the upper clipping limit, the output was set to 1.0. If it was 

lower than the lower clipping limit, it was set to 0.0. If the input lay in between the 

two clipping limits, the output was determined by the look-up table. The clipping limits 

were determined so that numbers of greater magnitude would give no change in the 

quantized output from the look-up table. In this way, the look-up table would be used 

efficiently to model the more linear region of the sigmoid, and not simply act as a 

clipper itself. 

The look-up table to perform the function of the sigmoid non-linearity was generated 

as follows. Firstly it was assumed that the output would be quantized into 512 levels, 

since this appeared to be a generous value in view of the quantization results, and 

includes a substantial safety margin. Consider that there were N entries in the look-up 

table. This range was offset to -NI2 to +NI2 by adding N/2 to the input value. This 

provided a means to deal with negative inputs to the sigrnoid function. A scaling factor 

was then used to map numbers in the range between the two clipping levels to the -NI2 

to +N/2 range of the look-up table. The look-up table output values were then generated 

by using the real sigmoid over the range that could be dealt with by the look-up table. 

11.2.6 Qualitative evaluation of the effect of a look-up table 

The outputs from the MLP-Tx algorithm for different sized look-up tables are shown in 

figure 11.9. Trace A shows the speech pressure waveform and B the corresponding 

laryngograph waveform. Trace C shows the output with no look-up table. Trace D 



shows the output with a look-up table with 128 entries, which appears visually the same 

as without any look-up table. Traces E to J show the output for look-up tables of sizes 

128, 64, 32, 16, 8, 4 and 3 respectively. It can be seen that fewer than 32 entries has 

a significant effect on the height output waveform, as well as the shape of the output 

pulses. No useful output is generated in this example for tables using only 4 and 3 

entries. 

11.2.7 Quantitative assessment of the effect of a look-up table 

The performance of the algorithm in quantitative terms for different levels of 

quantization is shown in figure 11.10 to 11.15. These evaluations was carried out using 

the same MLP-Tx algorithm and test data used for the quantization experiments. 

It can be seen that the performance does not change much until a look-up table with 

fewer than about 32 entries is used, and operation using a look-up table with an 8-bit 

input resolution is completely satisfactory. The different comparison metrics again show 

different amounts of degradation as the number of entries in the look-up table are 

decreased. 

There was virtually no degradation in any metric until fewer than 32 locations were 

used. As the number of locations decreased, the voiced-to-unvoiced errors reduced but 

the unvoiced-to-voiced errors increased. Similarly, the frequency contour drop errors 

reduce and the chirp errors increase. The fine accuracy of the period estimates showed 

less degradation than some of the others. With look-up tables with only 4 locations, 

most of the metrics indicate degraded performance. It is interesting to notice that a 3 

entry look-up table gave much better quantitative results than the 4 entry look-up table, 

and was in fact almost as good as 32 entries. 

1 1.3 PERCEPTUAL EVALUATIONS OF THE REAL-TIME MLP-TX ALGORITHM 

IN THE EPI HEARING AID 

11.3.1 Introduction 



A real-time implementation of the reduced filterbank and network MLP-Tx algorithm 

was written by John Walliker, with weights provided for the MLP by the author. This 

system was then used in perceptual evaluations with normal listeners and patients with 

a profound hearing loss. 

MLP-Tx algorithm used for perceptual tests 

The reduced computation wideband filterbank MLP-Tx algorithm described above was 

trained on two female speakers in pink noise at a signal to noise ratio of 3dB, with 

respect to 500ms frames in each signal and noise that contained the maximum power. 

Details of the training are the same as described in chapter 9, except a final training pass 

over the data was made in which the emphasis of the period marker patterns were 

increased to ten, as opposed to the usual value of one. This has the effect of changing 

the operating point of the MLP-Tx detector so that it generates more hits, but also more 

false alarms. In the perceptual tests, it was felt by the tester that it was more important 

to get a large number of hits, because the occasional false alarms were less important 

than misses. 

11.3.2 Perceptual assessment task 

An intervocalic consonant test (Rosen et al., 1979) was used to provide the material for 

the perceptual evaluations. This test consists of the presentation of a vowel-consonant- 

vowel (VCV) sound, which must then be identified by the subject. This is done for the 

twelve British English consonants [m b p v f n d t z S g k]. Because half of the 

consonants are voiced and the other half are unvoiced, it is possible to compute the 

errors in voicing that were made by the subject by analyzing hisher responses to the 

test. The test was presented in the form of a video recording of a female speaker of 

standard southern British English. 

The fundamental frequency (periods) was estimated using the MLP-Tx algorithm and 

also using the peak-picker, so that a comparison could be made. 



11.3.3 Comparing amplified speech presentation against using fundamental period 

estimate presentation from the MLP-Tx algorithm 

Figures 1 1.16 and 1 1.17 both show the overall correct and voicing information reception 

in the consonant identification task for two patients (S 1 and S 1 1) using the SiVo hearing 

aid. Each symbol represents at least 48 trials. Lines are drawn between the means of 

the plotted points and the vertical bars show the range of the points. 

The tests conditions were: 

L+Sp - lipreading with speech information from the patient's amplifying hearing aid. 

L+(Sx)A - lipreading with fundamental frequency information from the MLP-Tx 

algorithm,. presented as a frequency controlled sinusoid, and speech amplitude 

information presented as an amplitude modulation of the sinusoid. The amplitude 

envelope was extracted by half-wave rectification and low-pass filtering at 20Hz and 

24dB/oc tave. 

Lipreading alone. 

In subjects 1 and 3 (S 1 and S3), data was also collected for lipreading with fundamental 

frequency information from the MLP-Tx algorithm without amplitude information. 

In quiet conditions, there is little difference in voicing information performance using 

either speech or the MLP-Tx algorithm. However, as the signal-to-noise ratio increases, 

the performance using the speech degrades significantly, whereas the performance using 

the MLP-Tx algorithm is much less affected. At a 5dB SNR, using the speech signal, 

no useful voicing information is transferred, whereas the MLP-Tx algorithm still 

provides a significant amount of information relating to voicing. 

These results demonstrate the value of using the MLP-Tx algorithm as opposed to 

merely presenting an amplified version of the speech to the patients. The MLP-Tx 

algorithm gave better performance in noise for the discrimination of voicing contrasts 

than the patients could achieve using the whole speech signal. 



11.3.4 Comparing fundamental period estimate presentation from the peak-picker 

or from the MLP-Tx algorithm 

Figures 1 1.18 and 1 1.19 both show the overall correct and voicing information reception 

in the consonant identification task for two normal subjects and a cochlear implant 

patient using the UCZ.VRNID single channel cochlear implant. Each symbol represents 

at least 48 trials. Lines are drawn between the means of the plotted points and the 

vertical bars show the range of the points. 

The tests conditions were: 

L+Fx(mlp) - lipreading with fundamental frequency (Fx) information from the MLP-Tx 

algorithm. 

L+Fx(pp) - lipreading with fundamental frequency (Fx) information from the peak-picker 

algorithm. 

L+Sp - lipreading with speech information from the patient's amplifying hearing aid. 

Lipreading alone. 

The MLP-Tx algorithm was able to extract information concerning the voiced-unvoiced 

contrast in a 5dB SNR, and its performance under such conditions were no worse than 

in the noise-free situation. The peak-picker, however, showed a performance 

degradation with increasing SNR, and at the 5dB SNR point it provided no useful 

voicing information. 
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Figure 11.1 Schematic diagram for the MLP-Tx algorithm of reduced computational 

complexity. 

The reduction in computation was necessary to permit real-time operation on a 

TMS320C25 digital signal processor. 



Figure 11.2 Diagram illustration the effect of quantization. 

The outputs are from the reduced computational complexity MLP-Tx algorithm. Trace 

A shows the speech pressure waveform from a female speaker. Trace B shows the 

laryngograph waveform. Traces C to J show the MLP-Tx algorithm output for varying 

degrees of quantization of the weights. In all cases, a 256 entry look-up table was used. 
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Figure 11.3 Bar-graph showing the gross errors generated for different levels of 

quantization on women evaluation data set. 
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Figure 11.4 Bar-graph showing the standard deviation of fine frequency differences 

errors generated for different levels of quantization on the women evaluation data set. 
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Figure 11.5 Bar-graph showing the chirp errors generated for different levels of 

quantization on women evaluation data set. 
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Figure 1 1.6 Bar-graph showing the drop errors generated for different levels of 

quantization on women evaluation &ta set. 
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Figure 1 1.7 B ar-graph showing the voiced-to-unvoiced errors generated for different 

levels of quantization on the women evaluation data set. 
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Figure 11.8 Bar-graph showing the unvoiced-to-voiced errors generated for different 

levels of quantization on the women evaluation &ta set. 



Figure 11.9 Illustration of the effect of look-up table size on the output from the 

reduced computational complexity MLP-Tx algorithm. 

Trace A shows the speech pressure waveform from a female speaker. Trace B shows 

the Iaryngograph waveform. Traces C to J show the MLP-Tx algorithm output for 

varying degrees of quantization of the weights. In all cases, 512 quantization levels 

were used. 
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Figure 1 1.10 Bar-graph showing the gross errors generated for different look-up table 

sizes. 
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Figure 1 1.1 1 Bar-graph showing the standard deviation of frne frequency differences 

errors generated for different look-up table sizes. 
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Figure 11.12 Bar-graph showing the chirp errors generated for different look-up table 

sizes. 

V 
1 2 3 4 5 6 7 8 

THERE ARE 8 DIFFERENT EXPERIMENTS 
EXPS: unquont ized  q512t t28  q512t64 q512t32  q512t16 q512t8 q512t4 q512t3 

RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F ILES 
FILENAMES: 11 f 2  13 f 4  f 5  f 6  f 7  f 8  f 9  f l O  

Figure 1 1.13 Bar-graph showing the drop errors generated for different look-up table 

sizes. 
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Figure 1 1.14 Bar-graph showing the voiced-to-unvoiced errors generated for different 

look-up table sizes. 

V 

l 2 3 4 5 6 7  8 
THERE ARE 8 DIFFERENT EXPERIMENTS 

EXPS: unquantized q5121128 q512164 q512132 q512116 q51218 q51214 q51213 
RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  

FILENAMES: 1 1  f2 f3 14 15 16 f7 18 f 9  f10 

Figure 1 1.15 Bar-graph showing the unvoiced- to-voiced errors generated for different 

look-up table sizes. 
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Figure 11.16 Overall comct and voicing information reception in audio-visual 

consonant identification using the MLP-Tx algorithm and direct speech presentation for 

subject S 1. 

(After Andrew Faulkner). 
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Figure 11.17 Overall correct and voicing information reception in audio-visual 

consonant identification using the MLP-Tx algorithm and direct speech presentation for 

subject S l 1. 

(After Andrew Faulkner). 
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Figure 1 1.18 Overall correct and voicing information reception in audio-visual 

consonant identification using the MLP-Tx algorithm and the peak-picker algorithm for 

two normal subjects. 

(After Andrew FauIkner). 
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Figure 1 1.19 Overall correct and voicing information reception in audio-visual 

consonant identification using the MLP-Tx algorithm and the peak-picker algorithm for 

a UCH/RNID cochlear implant patient. 

(After Andrew Faulkner). 



CHAPTER 12: CONCLUSIONS 

This chapter provides a summary and conclusions of the most important experiments and 

achievements of the work described in this thesis. 

12.1 SPEAKER DEPENDENT INITIAL EXPERIMENTS 

12.1.1 Preliminary experiment 

The first experiment carried out on several speakers used a wideband-filterbank pre- 

processing. Performance (on five male speakers used to train the algorithm) was shown 

to be better than a that for the peak-picker in the presence of noise. A limitation of this 

experiment was that the same speakers were used for training and testing of the 

algorithm, and the results were only on male speech. 

12.2 SPEAKER INDEPENDENT EXPERIMENTS USING REVERBERANT SPEECH 

12.2.1 New database 

A new database was recorded, so that the performance on female speakers could be 

gauged, and to permit speaker independent comparisons to be made. In addition, the 

recording conditions were selected to be representative of real conditions likely to be 

encountered by a fundamental period estimation algorithm operating in a signal 

processing hearing aid. That, background noise and reverberation. 

Three separate sets of data were recorded. Firstly, there was a training data set. An 

important requirement was that the speech and laryngograph signals had to be recorded 

with a constant time-delay, and this was achieved by fixibg the microphone to a rod 

attached to a helmet worn by the subjects. The speech and laryngograph signals for the 

training data were then time-aligned. 

There were also two separate testing data sets, each of which contained different 



speakers. Two data sets were used so that primary evaluations of algorithm parameters 

could be made on one set, and then final unbiased comparisons with other technique 

could be made on the other set. 

12.2.2 Three types of pre-processing 

Whereas the preliminary experiments used filterbank pre-processing, later experiments 

were carried out using direct speech input to the MLP, a reduced sized wideband 

filterbank and an auditory filterbank. The direct speech MLP-Tx algorithm operated at 

the full frame-rate of the input speech (8kHz), whereas the filterbanks operated at a 

reduced rate (2kHz). 

12.2.3 Selective emphasis training 

The original training using back-propagation was slow. A technique was devised 

whereby the contribution of a pattern to the MLP weight updates was made on the basis 

of the response of the MLP to the particular pattern. If a patterns generated an output 

within a preset range of the target value, it was ignored. This procedure resulted in 

approximately between 3-10 times faster training. 

Results on the evaluation data set for the direct speech, reduced wideband filterbank and 

auditory filterbank MLP-Tx algorithms were generated for the male and female data. 

The output waveforms from the MLP-Tx algorithm was examined for normal and 

erroneous conditions. 

Final results for the best configurations of each type of MLP-Tx algorithm were then 

generated on the final test data. The results for the peak-picker and cepstral analysis 

were also generated for the purpose of comparison. 

12.2.4 Frequency contour comparisons 

Fundamental frequency contour comparisons were then made. It was found that the 



direct speech operation gave fewer gross errors than the two filterbanks. Its period 

estimate resolution was also higher, because it operates at a higher frame-rate In 

addition, the auditory filterbank gave better performance than the reduced wideband 

filterbank. It was found that the MLP-Tx algorithm performed better than cepstrum and 

the peak-picker in terms of voicing determination. Its performance in terms of gross 

enors was worse than the cepstrum in terms of gross errors, but it must be borne in 

mind that the cepstrum algorithm included a gross error correction routine, whereas the 

MLP-Tx algorithm only employed simple post-processing. The cepstrum performed 

much worse than the MLP-Tx algorithm in terms of voicing determination. 

12.3 REAL TIME IMPLEMENTATION AND PERCEPTUAL RESULTS 

12.3.1 Real-time implementation 

To run the MLP-Tx algorithm in real-time, the computational load of the original 

wideband filterbank version was reduced. A real- time implementation was carried out 

in conjunction with John Walliker, and this was then used by Andrew Faulkner as a 

source of fundamental period information in perceptual tests using mormal and 

profoundly deaf subject in a consonant resognition task. 

12.3.2 Perceptual results for normal subjects and profoundly deaf patients 

The perceptual results showed that the real-time MLP-Tx algorithm performed better in 

the presence of noise than the peak-picker, and gave useful output at 5dB SNR, whereas 

the peak-picker gave no useful output at this noise level. The tests also showd the value 

of using pattern element extraction since better results were obtained with the profoundlt 

deaf patients using the MLP-Tx output than using the whole speech signal. 

The general conclusion is that a new approach to fundamental period estimation has 

been designed and developed sufficiently that it is of practical value in signal 

processing hearing aids, and in noisy conditions it has been shown to give better results 

in such an application than the peak-picker. 
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APPENDIX A. 1: PATITERN PROCESSING SYSTEM 

The pattern processing system provides a convenient means of performing pattern 

processing operations on speech items stored in sfs format &luckvale, 1988). It was felt 

important to make the system as flexible as possible with regard to data vector 

generation and the type of pattern classification algorithms that could be used. 

The requirement for the generation of pattern vectors are: 

1) It must be possible to generate input vectors using different input coefficient items 

at the same time, each resulting perhaps from different types of preprocessing routines. 

Thus it should be possible to build a pattern vector with elements composed from frames 

from coefficient items with different frame rates. 

2) It must be possible to specify the number of frames from each coefficient item 

separately,as well as the offset of the window. This will allow different amounts of 

context on the different input items to be implemented. 

It was felt important to ensure that the system would lend itself to the use of a variety 

of pattern recognition techniques. 

System description 

The system is composed of three main sections: 

1) Data formatting and sorting programs that generate data vectors, and their target 

patterns, of appropriate format for use with the pattern recognition programs. 

2) Pattern recognition programs that operate on the data vectors either in learn mode, 

recognition mode or test mode. 

3) Conversion programs that reformat the results of processing back into a suitable 



format for use. 

The input items required by the pattern processing system are data in the form of 

coefficient items and in the case of learn mode, target annotations. 

The input data to the pattern processing system consists of items of coefficient data. 

More than one coefficient item may be used in the generation of the input vector, each 

with different frame durations, provided that the sampling rates are all integer multiples 

of the shortest frame duration. Each item requires specification of how many of its 

frames are used at once in the data vector. This constitutes the width of the observation 

window on each item. In addition, the offset of the window must be specified. 

The use of multiple input items with potentially different frame rates is valuable because 

it permits the construction of pattern vectors with elements that change on different time 

scales. Thus one may use a fast frame rate item with another slower item where the 

latter provides a wider context to the classifier than would otherwise be possible. 

The target pattern must be supplied in the form of a track item that has the same 

sampling rate as the highest sampling rate coefficient item. The target track item can 

be generated by the program m, which maps the target annotations to the desired 

feature track. 

In order to label the pattern vectors with information needed by the sorting program, 

there should also be a suitable annotation item in the sfs file. This can, of course, be 

the same as the annotation used to generate the target track item. 

Preparation of data vectors for the pattern classifier is then carried out using the two 

programs pform and psort. 

The program pform is a formatter program, the input of which consists of two files. 

The first is a sfs data file containing the input data coefficient items, target track item 



and label annotations. 

The second is a text parameter file containing information indicating which coefficient, 

annotation and track items should be used as input. This file has the name 

<featurename.par>. 

The output from the program consists of three files: 

An identification file <featurename.info>. 

A binary data file composed from the input coefficient data items <featurenarne.vec>. 

An ascii labels file <featurename.LAB> that contains information on how to generate 

the pattern vectors from the <featurename.veo file as well as the target pattern class 

for the respective vectors and information useful for sorting. 

The ascii labels file <featurename.LAB> is a list of structures that specify how to 

generate a data vector from the binary <featurename.vec> file. Each structure has five 

entries: 

1) annotation labels. 

The first entry consists of a concatenation of the specified annotations that were valid 

at that point in time. 

2) Target value. 

The second entry is the target value for the pattern vector, as specified by the track item. 

In the case of a binary classifier, this value is either 0 or 1. 

3) Offset. 

The third entry is an offset (in bytes) which points into the binary data file and specifies 

the data value in the pattern vector. 



4) Size. 

The fourth entry is the number of bytes forward of the offset that are also in the pattern 

vector. 

5) numsets. 

The fifth and final entry is a number which specifies how many of these structures are 

needed to specify the pattern vector. If the number is greater than one, the next 

(numsets-l) structures point to data that is also in the same pattern vector, and their 

numsets values is always 0. 

Control of the formatter is achieved by means of the parameter text file 

<featurename.par>, the format of which is given below. This text file specifies which 

input coefficients are used as data inputs, and how the data vector is constructed from 

the data items. In addition this file specifies the track item used to specify the target 

values for the pattern vectors. The annotation item to be used in sorting is also 

specified here. 

The parameter text file < featurenarne.par> has the following format: 

number~of~input~coefficient~items a u m b e n  

input-coefficient-match <match> 

elernen ts-in-frame <width> 

number-of-framesjn-window <frames> 

window-framespffset <offset> 

output-track-target-match <match> 

number-of-label-annotations <value> 

label-annotation-match <match> 

These lines have the following meaning: 

line 1 number-of-input-coefficient-items Cnumben 

This specifies the number of coefficient items that will be read from the sfs dataf3e. 

If cnumben is greater than one, then lines 2,3,4 and 5 must be repeated once for each 



coefficient item. 

line 2 input-coefficient-match <match> 

This string -match> specifies which coefficient item will be read from the sfs file. It 

follows the sfs matching convention. 

line 3 elements-in-frame <width> 

The value of <width> is the number of elements in one frame of the coefficient data. 

line 4 number-of-frames-in-window <frames> 

The value of <frames> specifies how many contiguous frames of the coefficient data are 

used in the pattern vector. 

line 5 window-frames-offset <offset> 

The value of <offset> determines how far, in frames, the output is from the start of the 

window. 

line 6 output-track-target-match <match> 

The string <match> specifies the track item that will be read in and used as the target 

pattern value for the pattern vectors. 

line 7 number~of~label~annotations <number> 

This specifies the number of annotation items that will be read from the sfs data file. 

If <numben is greater than 1, then line 8 must be repeated for each annotation item. 

line 8 label-annotation-match <match> 

The string <match> specifies the annotation item that will be read in which may then 

be useful for sorting by the psort program. 

The psort program has the option either to write or append to the files. In case where 

one has a large number of files for use with the pattern processing system, one would 

use the write mode for the first file and the append mode for the remainder. 



The order of presentation of groups of data vectors is important for certain iterative 

trainable pattern classifier, such as the multi-layer-perceptron. It is therefore necessary 

to have the ability to sort the data vectors in order to generate groups that are as 

representative of the entire data set as possible. This is achieved by means of the 

program psort. 

The program m is a sorting or copying program. 

The input to the psort program consists of two files: 

An ascii labels file <featurename.LAB> generated by pform. 

A text identification file <featurename.info> generated by pform. 

The output form the psort program consists of two files: 

A binary labels file <featurenarne.lab> 

The text file <featurename.info>, which was the file generated by the program pform, 

is appended with information about the sorting process. 

The next stage is to run a pattern classification algorithm on the data. At present only 

a multi-layer perceptron algorithm has been implemented, but it is intended to have a 

selection of standard algorithms as options in the near future. 

The program mlpw is a general purpose mlp classifier that can operate in three modes: 

Learn mode, recognition mode or test mode. 

The program expects details of the mlp network to be contained in a configuration file 

<mlpmodel.mlp>. This file contains the specification of initial network configuration 

and the weights that are determined during learn mode, The pattern vectors are read 

from the binary files <featurename.vec> using the specifications in <featurename.lab>. 

The configuration file has the following format: 



configuration 

<layer€)>-dayerl >-..-dayerN> 

history 

<cycle> <normalized error> <date> 

layer 1 

<connection> cweighu <delta> 

layer 2 

<connection> <weight> <delta> 

layer 3 

<connection> <weight> <delta> 

Initial setup is achieved by specifying the required configuration and then the 

interconnections for each layer. If full interconnect is required, this is specified as 

<full>. For example for a 19 input, no hidden layer and 1 output mlp with full 

interconnect, the initial configuration file would be: 

configuration 

19- 1 

layer 1 

full 

In learn mode the mlp model in the configuration files is updated using the data in the 

binary files <featurename.lab> and <featurename.vec>. There are currently two 

adaptation methods available: method 0 (standard adaption) which uses fixed a and r 
values; method 1 (Lai-Wan adaption) which used changing a and l? values, which are 

chosen as a function of the direction of adaption in parameter space. 

In test mode, the mlp specified model is used to generate outputs for each vector which 

are then compared with the supplied target label values. Performance statistics are 

printed on the basis of the location of a threshold that results i equal miss-rate and false- 

alarm rate. The receiver operating characteristic (ROC) may be generated by selecting 

the <-S> option. 



In recognition mode, the rnlp model in the configuration file is used to generate output 

values for the input vectors. The input labels and recognised outputs are written to the 

files <featurename.mlp.i> and <featurename.rnlp.r> respectively. 



APPENDIX A.2: COMPUTER ANALYSIS PROCEDURES 

ACQUISITION AND LABELLING OF THE DATA 

This section contains a complete list of execution of programs commands used to 

prepare the data for either training or testing purposes. 

Stage 1: Acquisition of the speech and laryngograph data 

The speech and laryngograph signal for the subjects was previously recorded onto DAT 

tape. The output of each channel of the DAT recorder was fed into a 8th order 

Butterworth low-pass filter with a 3.5kHz cutoff frequency. The two signal channels 

were then connected to the A/D converts on the Masscomp 5600 computer. Acquisition 

was carried out using the inwd program, which acquires speech and laryngograph into 

a SFS file that has previously had its header set-up using the command. For 

example, the hed command line for one occasions was: 

hed tmd.far1 

The inwd program was then executed using the command line: 

inwd -f8000.0 -1 -m8 tmd.far1 

This results in speech and laryngograph being saved into the file tmd.far1. The 

summary of the file is as follows: 

1. SPEECH (1.01) 153600 frames from inwd/SP(freq=8000,linked) 

2. LX (2.01)153600 frames from inwd/LX(freq=8000,linked) 

Stage 2:' Generation of reference period markers 

The reference period markers are generated by analysis of the laryngograph in the SFS 



file by means of two programs: The f m t  of these is lxtx, which generates a bandpass 

filtered version of the laryngograph, and a differentiated version of this bandpass filtered 

laryngograph. In addition, it generated a f m t  approximation to the period marker 

locations, by estimating the noise threshold in the laryngograph signal, and using it to 

set the reference value of a comparator that operates on the differentiated laryngograph 

signal. 

In order to estimate the background noise in the laryngograph signal, it is necessary to 

annotate the speech and laryngograph signal with regions that are only laryngograph 

noise. This is done using the standard interactive Es program, using the command line: 

After running this, there is an annotation item saved into the SFS file that can be used 

by the lxtx program to identify laryngograph noise. Thus the lxtx program is run by 

using the command line: 

lxtx -S -i5.01 tmd.far1 

The next stage is to run the interactive program to permit manual cleaning-up of the 

period marker estimates. In addition, this program allows the placement of annotations 

to denote that the laryngograph period markers estimate is unreliable in certain regions, 

and should not be used for training of for testing. Thus, the lxia program is run using 

the command line: 

lxia -S1.01 -L1601 -D1602 -T3.01 trnd.far1 

This then results in a hand-checked estimate of the period marker placements as well 

as annotations to indicate regions of the signal that must be rejected. The summary of 

the SFS file is now: 

1. SPEECH (1.01) 153600 frames from inwd/SP(freq=8000,linked) 



2. LX (2.01)153600 frames from inwd/LX(freq=8000,linked) 

3. ANNOT (5.01) 5 frames from Es/AN(type=sil) 

4. TRACK (1 6.01) 153600 frames from lxtx(2.01 ;firproclx;delay=O) 

5. TRACK (1 6.02) 153600 frames from lxtx(2.01 ;diffLX;delay=O) 

6. TX (3.01) 2114 frames from 

Ixtx(2.01 ;tx=maxdiff;thresh=55.8742;delay=O) 

7. ANNOT (5.02) 67 frames from lxia(type=r+/r-) 

8. TX (3.02) 2225 frames from lxia(16.02,3.01) 

Stage 3: Alignment of the reference period markers to the speech. 

Because the time-delay between the laryngograph signal and the speech is different for 

different recordings made at different distances (and different vocal tract lengths) it is 

necessary to align all the reference period markers and its corresponding speech signal 

so that it is the same for all recordings. This is achieved by running a partially (or fully 

trained) MLP-Tx algorithm operating at the full 8kHz sampling rate on the speech in  a 

given file. The corresponding period markers for this are then generated using the p& 

program, and the delay between this and the reference period markers is computed. This 

is then used to time-shift the reference period markers to align with the speech in the 

desired fashion. The alignment and shifting of the reference period markers is carried 

out using the program align. 

Thus, the three steps involved in aligning the reference period markers to the speech are: 

1) Run the preprocessor for the MLP-Tx algorithm, that is 

preproc -il .O1 agc.par tmd.far1 

2) Run an 8kHz MLP-Tx algorithm on this pre-processed speech, that is 

mlptr -W 161 -080 -i 16.03 -s1.0 -heavbl03 eavbl03 tms.far1 



3) Generate the period markers from the MLP-Tx algorithm 

trtx -t0.4 -i16.04 -fSW tmd.far1 

4) linearly align the reference period markers to the MLP-Tx tx: 

align -i3.03 -i3.02 tmd.farl 

The summary of the SFS file is now: 

1. SPEECH (1.01)153600 frames from inwd/SP(freq=8000,linked) 

2. LX (2.01)153600 frames from inwd/LX(freq=8000,linked) 

3. ANNOT (5.01) 5 frames from Es/AN(type=sil) 

4. TRACK (16.01)153600 frames from Ixtx(2.0l;firproclx;delay=0) 

5. TRACK (1 6.02) 153600 frames from lxtx(2.0 1 ;diffLX;delay=O) 

6. TX (3.01) 2114 frames from 

lxtx(2.01; tx=maxdiff;thresh=55.8742;delay=O) 

7.  ANNOT (5.02) 67 frames from lxia(type=r+/r-) 

8. TX (3.02) 2225 frames from lxia(16.02,3.0 1) 

9. TRACK (1 6.03) 153600 frames from 

preproc(1 .O1;parameterfile=agc.par;scale= 1 ;output) 

10. TRACK (16.03) l 5 3 6 0  frames from 

mlptr(l6.03;mlp=eavbl03,window=161 ,offset=80,output=0,sc=l ,eavb 103) 

11. TX (3.03) 1825 frames from 

trtx(l6.04;threshold=0.4;maxpulse;maxfx=S00) 

12. TRACK (16.05) 1600 frames from align(type=txaligned;3.03,3.02;offset=O. 1 )  

13. TX (3.04) 2225 frames from 

align(type=txdata;alignedby=3.03,from=3.02;offset=0.00437S) 

stage 4: Removing unnecessary items in the SFS file 

The data is now prepared for either training or testing purposes, and all the items that 



are no longer required are then removed. This is achieved by running the SFS remove 

utility program: 

remove -i 16.01 -i16.02 -i 16.03 -i16.04 trnd.far1 

The SFS file summary thus gives: 

1. SPEECH (1.01)l S3600 frames from inwd/SP(freq=8000,linked) 

2. LX (2.01)153600 frames from inwd/LX(freq=8000,linked) 

3. ANNOT (5.01) 5 frames from Es/AN(type=sil) 

4. TRACK -(l 6.02) 153600 frames from lxtx(2.01;diffLX;delay=O) 

5. TX (3.01) 2114 frames from 

lxtx(2.01;tx=maxdiff;thresh=55.8742;delay=0) 

6. ANNOT (5.02) 67 frames from lxia(type=r+/r-) 

7. TX (3.02) 2225 frames from lxia(16.02,3.01) 

8. TRACK -(l 6.O3)l S3600 frames from 

preproc(l.0 1 ;parameterfile=agc.par;scale= l ;output) 

9. TRACK -(l h.O3)lS3600 frames from 

mlptr(l6.03;mlp=eavb103,window=161 ,offset=80,output=0,sc=l ,eavb 103) 

10. TX (3.03) 1825 frames from 

trtx(16.04; threshold=0.4;maxpulse;maxfx=500) 

11. TRACK (16.05) 1600 frames from align(type=txaligned;3.03,3.02;offset=O. l )  

12. TX (3.04) 2225 frames from 

align(type=txdata;alignedby=3.O3,from=3.02;offset=O.~4375) 

Further processing of the data then differs depending on whether the data will be used 

for training or testing purposes. The processing is also different depending on the 

different pre-processing and post-processing operations that are carried out. 

PREPARING DATA FOR TRAINING THE MLP DIRECTLY ON THE SPEECH 

PRESSURE WAVEFORM 



The data for training the MLP directly on the speech pressure waveform was generated 

by simply scaling the amplitude of the input speech and then generating sorted pattern 

vector files of the appropriate format. These would then be used by the mbwe program. 

stage 1 

The first processing step was to scale the speech to an input range of -1.0 to +1.0. This 

was achieved using the preumc program by executing the command line: 

preproc -i 1.01 agc.par tmd.far l 

The parameters for this program are contained in the parameter file agc.par. This file 

contains the following information: 

pre-processingparameters 

input-scaling-factor 1.0 

automatic_p;ain-control 

no-iir-fil ter 

no-iir-filter 

no-rectifier 

no-iir-filter 

decimation-factor 1 

linea~output 

output-scaling -factor 0.001 

no~automatic_gain~control 

end-of-parameters 

stage 2 

The target labels for the speech data are specified using the program m. This 

program write out an output track that specifies the identity of the regions around a 

period marker. The widths of the zones are specified in the parameter file txtar.sp This 



parameter file contains the following information: 

txtacparameters 

tx-pulse-width 1 

pre-uncertain-width 3 

pos t-uncertain-width 4 

voice-width 160 

end-of-parameters 

The txtar program is executed using the command line: 

txtar -f8000.0 -i3.04 txtar.sp tmd.far1 

Notice that for operation directly on the speech, an output sampling rate of 8kHz is 

specified. 

Stage 3 

The input speech has now been suitably scaled and the output target labels have been 

specified. The next stage is to generate the pattern vector files used by the ml~we 

program. 

The initial formatting process in carried out using the program pform. The operation 

of this program is specified by the generic parameter file md2farl.par. It contains he 

following information: 

annotation-target-mode 

input-trackdata 

elernen tsjn-frame 1 

input-track-match preproc(*;*agc.par*) 

number-of-kames-in-window 16 1 

window-frames-offset 80 



numberof-track-outputs 1 

output-track-target-match txtar(*;pars=txtar.sp;rc=regionid;*) 

number~of~label~annotation~items 2 

label-annotation-match lxia(type=r+/r-) 

label-annotation-match txtar(*;pars=txtar.sp;rc=ann;*) 

end-of-parameters 

The command line to execute the formatting program is: 

pform -sl.O md2farl 

This generates a ascii labels file md2farl.LAB and an input vectors file md2farl.vec. 

The order of occurrence of the vectors is the same as they occurred in the input SFS 

file. In order to sort them into more representative groups, the program psort must be 

used. Sorting in performed on the basis of the annotation labels specified in the pform 

parameter file; for the work here, the sorting annotations were simple period marker 

annotations. This is executed using the command line: 

psort -S md2farl 

This results in a sorted labels file md2farl.lab, which is used together with the vectors 

file md2farl.vec, by the mlpwe program. 

PREPARING DATA FOR TRAINING THE MLP USING WIDEBAND FILTERBANK 

The data for training the MLP on the output of a wideband filterbank was generated by 

running a filterbank program and then generating sorted pattern vector files of the 

appropriate format. These would then be used by the mlvwe program. 

stage 1 

The first processing step was to filter the speech into the required number of bands and 



then to scale the outputs to an input range of -1.0 to +1.0. For each channel in the 

filterbank analysis, this was achieved using the prep= program by executing the 

command line (with the appropriate parameter file for a given channels): 

preprw -i 1 .O 1 c 1tms.par tmd.far1 

The parameters for this program are contained in the parameter file cltms.par. This file 

contains the following information: 

pre-processing-parameters 

input-scaling-factor 1.0 

no-automatic~ain-con trol 

iir-filter-order 2 

denominator-coeff-a0 1.0 

denominator-coeff-a1 - 1.944336E+O 

denominator-coeff-a2 9.459229E-01 

numerator-coeff-bl 9.725647E-01 

numerator-coeff-bO - 1.945 129E+00 

numerator-coeff-b2 9.725647E-0 1 

iir-fil ter-order 2 

denominator-coeff-a0 1.0 

denominator-coeff-a l - l.l66943E+O 

denominator-coeff-a2 7.166748E-01 

numerator-coeff-bO 1.18 1030E-02 

numerator-coeff-b l 2.36206 1 E-02 

numerator-coeff-b2 1.18 1 1030E-02 

half-wave-rec tifier 

iir-fil ter-order 2 

denominator-coeff-a0 1.0 

denominator-coeff-a l -9.4287 1 1E-01 

denominator-coeff-a2 3.333740E-0 1 

numerator-coeff-bO 9.762573E-02 



numerator-coeff-b l 1.9525 15E-01 

numerator-coeff-b2 9.762573E-02 

decimation-factor 4 

lineacou tput 

output-scaling -factor 0.025 

no~automatic_gain~control 

end-of-parameters 

stage 2 

The target labels for the speech data are specified using the program m. This 

program write out an output track that specifies the identity of the regions around a 

period marker. The widths of the zones are specified in the parameter file txtar.fb This 

parameter file contains the following information: 

txtar-parameters 

tx-pulse-width 1 

pre-uncertain-width 1 

post-uncertain-width 1 

voice-width 40 

end-of-parame ters 

The txtar program is executed using the command line: 

txtar -f2000.0 -i3.04 txtar.fb trnd.far1 

Notice that for operation on the output of the filterbank, an output sampling rate of 

2kHz is specified. 

Stage 3 

The input speech has now been suitably filtered and scaled, and the output target labels 



have been specified. The next stage is to generate the pattern vector files used by the 

rnlpwe program. 

The initial formatting process in carried out using the program pform. The operation 

of this program is specified by the generic parameter file md2farl.par. It contains he 

following information: 

annota tion-target-mode 

inpu t-track-data 

elements-in-frame 6 

input-track-match prep=(*; *c l tms.par*) 

input-track-match prepm(*;*c l tms.par*) 

input-track-match preproc(*;*c ltms.par*) 

input-trac k-matc h prep=(*; *c l tms .par*) 

input-track-match preproc(*;*c ltms.par*) 

input-track-match preproc(*;*c l trns .par*) 

number-of-frames-in-window 41 

window-frames-offset 20 

number_of~track~outputs 1 

output-track-target-match txtar(*;pars=txtar.fb;rc=regionid;*) 

number~of~label~annotation~items 2 

label-annotation-match lxia(type=r+/r-) 

label-annotation-match txtar(*;pars=txtar.fb;rc=ann;*) 

end-of-parame ters 

The command line to execute the formatting program is: 

pform -sl.O md2farl 

This generates a ascii labels file md2farl.LAB and an input vectors file md2farl.vec. 

The order of occurrence of the vectors is the same as they occurred in the input SFS 

file. In order to sort them into more representative groups, the program psort must be 



used. Sorting in performed on the basis of the annotation labels specified in the pform 

parameter file; for the work here, the sorting annotations were simple period marker 

annotations. This is executed using the command line: 

This results in a sorted labels file md2farl.lab, which is used together with the vectors 

file md2farl.vec, by the mlpwe program. 

PREPARING DATA FOR TRAINING THE MLP USING AN AUDITORY 

FILTERBANK 

The data for training the MLP on the output of a auditory filterbank was generated by 

running a filterbank program and then generating sorted pattern vector files of the 

appropriate format. These would then be used by the mlpwe program. 

stage l 

The f ~ s t  processing step was to filter the speech into the required number of bands and 

then to scale the outputs to an input range of -1.0 to +1.0. For each channel in the 

filterbank analysis, this was achieved using the coch program to filter the speech and 

then the preuroc program to half-wave rectify, smooth and decimate the outputs. The 

initial filtering was performed using the command line: 

coch -150 -h3500 41.01 tmd.far1 

The half-wave rectification was then performed using the command line: 

preproc -i 1 .O1 env0.par tmd.far l 

The parameters for this program are contained in the parameter file env0.par. This file 

contains the following information: 



pre-processingparameters 

input-scaling-factor 1.0 

no-automatic_gain-control 

no-iir-filter 

no-iir-fil ter 

half-wave-rec tifier 

iicfil ter-order 2 

denominator-coeff-a0 1.0 

denominator-coeff-a1 -9.4287 1 1E-01 

denominator-coeff-a2 3.333740E-01 

numerator-coeff-bO 9.762573E-02 

numerator-coeff-b l 1.9525 1 SE-01 

numerator-coeff-b2 9.762573E-02 

decimation-factor 4 

linear-output 

output-scaling -factor 0.025 

no~automatic_gain~control 

end-of-pararne ters 

stage 2 

The target labels for the speech data are specified using the program &tar. This 

program write out an output track that specifies the identity of the regions around a 

period marker. The widths of the zones are specified in the parameter file txtar.fb This 

parameter file contains the following information: 

txta~parameters 

tx-pulse-width 1 

pre-uncertain-width 1 

post-uncertain-width 1 

voice-width 40 

end-of-parameters 



The txtar program is executed using the command line: 

txtar -f2000.0 43.04 txtar.fb tmd.far1 

Notice that for operation on the output of the filterbank, an output sampling rate of 

2kHz is specified. 

Stage 3 

The input speech has now been suitably filtered and scaled, and the output target labels 

have been specified. The next stage is to generate the pattern vector files used by the 

mbwe program. 

The initial formatting process in carried out using the program pform. The operation 

of this program is specified by the generic parameter file md2farl.par. It contains he 

following information: 

annotation-target-mode 

input-track-data 

elements-in-frame 6 

input-track-match preproc(* ;*envO.par*) 

input-track-match preproc(*;*env l .par*) 

input-track-match preproc(*;*env2.par*) 

input-track-match prepme(*;*env3.par*) 

input-track-match prepme(*;*env4.par*) 

input-track-match prepme(*; *env5.par*) 

number-of-frames-in-window 4 1 

window-frames-offset 20 

number~of~track~outputs 1 

output-track-target-match txtar(*;pars=txtar.fb;rc=regionid;*) 

number~of~label~annotation~items 2 

label-annotation-match lxia(type=r+/r-) 



label-annotation-match txtar(*;pars=txtar.fb;rc=ann;*) 

end-of-parameters 

The command line to execute the formatting program is: 

pform -s1.0 md2farl 

This generates a ascii labels file md2farl.LAB and an input vectors file md2farl.vec. 

The order of occurrence of the vectors is the same as they occurred in the input SFS 

file. In order to sort them into more representative groups, the program psort must be 

used. Sorting in performed on the basis of the annotation labels specified in the pform 

parameter file; for the work here, the sorting annotations were simple period marker 

annotations. This is executed using the command line: 

psort -S md2farl 

This results in a sorted labels file md2farl.lab, which is used together with the vectors 

file md2farl.vec, by the mlpwe program. 

TRAINING THE MLP ON THE PA'ITF!RN VECTOR FILES 

A MLP is trained on a pattern vector file using the program mlpwe. The selective 

emphasis training is selected using the -S flag on the mlpwe program, and it requires 

the specification of the different zone thresholds and emphasis values. These are 

specified in the generic parameter file spfvf.mp. The file for normal selective emphasis 

training contains the following information: 

mlpwe-parameters 

number-of-zones 5 

target-zone0 0.0 

hce-zone0 1 .O 

Ice-zone0 0.0 



thresh-zone0 

target-zone 1 

hce-zone l 

Ice-zone l 

thresh-zone 1 

target-zone2 

hce-zone2 

Ice-zone2 

thresh-zone2 

target-zone3 

hce-zone3 

Ice-zone3 

thresh-zone3 

targe t-zone4 

hce-zone4 

Ice-zone4 

thresh-zone4 

end-of-parameters 

A typical training run consists of training at the update of 1 for the first part of the 

training, then increasing the update to 100 and finally to 1000. About 60 cycles over 

the vector file or files is typically carried out, and this takes about 3 days for the system 

operating directly on the speech pressure waveform with a suitable MLP configuration; 

any more cycles than this takes too long to run. Using the pattern vector file md2arl and 

the MLP sp4fv, this can be achieved using the command lines: 

mlpwe -L1 -S -e -ul -a0 -c60 md2arl sp4fv 

mlpwe -L1 -S -e -u100 -a2 -c60 md2arl sp4fv 

mlpwe -L1 -S -e -u1000 -a2 -c60 md2arl sp4fv 

TESTING THE MLP ON THE PA'ITERN VECTOR FILES 



It is possible to test the performance of an MLP on a pattern vector file using the mlpwe 

program. For example, to test the MLP spjdl l on the vectors file jdlar8, the command 

line would be: 

mlpwe -S -L1 -t jdlarl spjdll 

The resulting output from the program is as follows: 

Specialmode testing 

Patterns aligned along 1 channels 

MLP model 

Labels file 

Cycles 

Time 

zone0 

zone l 

zone2 

zone3 

zone4 

zone0 

zone l 

zone2 

zone3 

zone4 

spjdl l 

jdlar8 

9 

Thu Dec 20 23:44:46 1990 

The output gives the zone identification, and the target for the zone. Then, a threshold 

is indicated, and the percentage patterns that are above of below the threshold 

(depending on the pattern target class are given, as well as the absolute hits and the total 

patterns for that zone. The analysis is carried out for the training thresholds and also 

for the 'usable' threshold of 0.5, which is typically what would be used in real- 



operation. Consequently the latter gives a good estimate of real usable performance. 

GENERATING RECOGNX'MON OUTPUT FROM THE MLP 

To generate a recognition output of a trained MLP, the most general technique is to use 

the mlpwe program operating on an unsorted pattern vector file. For example, using the 

MLP spjdl l and the pattern labels file jdlarl, this generates the generic output ascii file 

jdlarl.mlp.r, in which the output order reflect the order of the labels in the input pattern 

vector file. Because of this, to maintain the time-order of the input speech, the psort 

program must be run with the -C option, so that no pattern class sorting is canied out. 

Thus, having formatted the patterns as described before using the pform program, the 

psort program is run as follows: 

psort -C jdlarl 

The mlpwe program is then run using the command line: 

mlpwe -S -L1 -r jdlarl spjdll 

The output file jdlar1.mlp.r can then be loaded into a SFS file using the trload program. 

In the case of operation at a 2kHz sampling rate with a lOms delay, loading into the 

SFS file jdl.far1 will be accomplished using the command line: 

trload 42000 -hspjdl l -00.01 jdl.far1 

POST-PROCESSING OF RECOGNITION TRACKS 

A recognition track in a SFS file can be used as the input to another MLP, by using the 

formatting, training and recognition techniques previously described. This is carried out 

by specifying direct operation on the track. The remaining procedure is the same as that 

followed for operation directly on the speech pressure waveform. 



A recognition track can also be converted to a excitation epoch marker (Tx) using the 

program m. This performs a simple threshold analysis of the input track, with a 

specified inhibition window around any detected period markers to reduce spurious 

detections. 

A typical command line for the trtx program is as follows: 

trtx -i16.05 40.5 -f500 jdl.far1 

This programs writes out a Tx item into the specified SFS file. These period marker 

values can be converted to a frequency contour using the program fx. The input items 

o this program are the Tx items to be converted, and the frame rate of the output Fx 

contour. An example command line for this program is: 

FREQUENCY CONTOUR (Fx) COMPARISONS 

Comparisons between a test frequency contour and a reference frequency contour can 

be carried out using the program fxcomv. The two inputs must be in a SFS file the 

form of frequency contours. 

For the SFS file ejt.frp2 with a reference Fx contour item 4.01 and test Fx item 4.02, 

a typical command line for the fxcomp program is: 

fxcomp -1-4.01 -t4.02 45.02 -p50 -f50 ejt.frp2 

The options -p50 and -f50 results in the program searching forward and backwards by 

50 frames to find the best fit between the reference an test Fx contours. This is in 

general necessary, because of different time delays between different algorithms. The 

rejection annotation item 5.02 is selected and this results in the analysis being carried 

out for all the annotation labels, and in additions, for each label separately. The only 



valuable results are given for the annotation label r-, which indicates a valid reference 

period markers in that region. The output from the algorithm is written to the file 

ejt.frp2.fxs, and this file contains the following information: 



................................................................ 
Filename ejt.frp2 

reference item = 01 

reference history = fx(3.04;m40,M800,fl00) 

test item = 01 

test history = fx(3.03;m40,M800,f100) 

Best offset = 0 

ANNOTATION LABEL [0] = all 
.............................................................. 
Reference data 

Voiced frames = 7 1411 679 Percent = 42.5253 

Unvoiced frames = 96511679 Percent = 57.4747 

Test data 

Voiced frames = 72511679 Percent = 43.1 805 

Unvoiced frames = 95411679 Percent = 56.8 195 

Voicing to no-voicing errors = 751714 Percent = 10.5042 

No-voicing to voicing errors = W965 Percent = 8.91 192 

Gross errors = 2311639 Percent = 36.1502 

F0 doubling errors = 371639 Percent = 5.7903 

Fine errors = 4081639 Percent = 63.8498 

Fine mean = -0.1 12745 

Fine std = 5.56442 

ANNOTATION LABEL [l] = lost 
.............................................................. 
No results for this annotation 

ANNOTATION LABEL [2] = r- 
.............................................................. 
Reference data 

Voiced frames = 67911469 Percent = 46.2219 



Unvoiced frames = 79011469 Percent = 53.778 1 

Test data 

Voiced frames = 69511469 Percent = 47.3 1 1 1 

Unvoiced frames =774/1469 Percent = 52.6889 

Voicing to no-voicing errors = 591679 Percent = 8.68925 

No-voicing to voicing errors = 751'790 Percent = 9.49367 

Gross errors = 2241620 Percent = 36.129 

F0 doubling errors = 351620 Percent = 5.64516 

Fine errors = 3961620 Percent = 63.87 1 

Fine mean = -0.0555556 

Fine std = 5.57156 

ANNOTATION LABEL [3] = r+ 
.............................................................. 
Reference data 

Voiced frames = 351210 Percent = 16.6667 

Unvoiced frames = 17512 10 Percent = 88.3333 

Test data 

Voiced frames = 301210 Percent = 14.2857 

Unvoiced frames = 18012 10 Percent = 85.7143 

Voicing to no-voicing errors = 16/35 Percent = 45.7143 

No-voicing to voicing errors = 111175 Percent = 6.28571 

Gross errors = 7/19 Percent = 36.8421 

F0 doubling errors = 2/19 Percent = 10.5263 

Fine errors = 12/19 Percent = 63.1579 

Fine mean = -2 

Fine std = 4.96655 

TIME OF EXCITATION MARKER (Tx) COMPARISONS 

Comparisons between a test Tx item and a reference Tx item can be computed using the 

program d~alinn, The name is indicative of the dynamic programming procedure used 



by the program to align the test and reference period markers. 

For the SFS file ejt.frp2 with the reference Tx item 3.04 and the test Tx item 3.03, the 

appropriate command line to run the analysis is: 

dpalign -p1.0 -r3.04 -t3.03 45.02 ejt.fa.2 

The program writes its analysis to a file ejt.far2.m. The contents of this file is shown 

below. The rejection annotation item 5.02 is selected and this results in the analysis 

being carried out for all the annotation labels, and in additions, for each label separately. 

The only valuable results are given for the annotation label r-, which indicates a valid 

reference period markers in that region. In addition to this statistical output, the dpalign 

program writes two items to the SFS file. The fwst of these is difference in absolute 

time of occurrence between the test and reference Tx items. The second is the 

differences in period values between the test and reference items. 



............................................................... 
Filename ejt.frp2 

Refe~nce data 

Ref item = 04 

Ref hist= align(type=txdata;alignedby=3.03,from=3.02;offset=0.005375) 

Test data 

Test item = 03 

Test hist = trtx(l6.04;threshold=0.4;maxpulse;rnaxfx=500) 

ANNOTATION LABEL [0] = all 

.............................................................. 
Reference Tx frames = 1256 

Test Tx frames = 1233 

Tx hits = 98111256 

Tx misses = 27511256 

Tx total false alarms = 252/1233 

Tx voiced false alarms = 19011233 

Tx unvoiced false alarms = 6211233 

Absolute mean jitter in samples = 6.82263 

Absolute sd jitter in samples = 12.9232 

Relative mean jitter in samples = 0.0254842 

Relative sd jitter in samples = 10.0666 

Percent = 78.1051 

Percent = 2 1.8949 

Percent = 20.438 

Percent = 15.4096 

Percent = 5.02839 

ANNOTATION LABEL [l] = lost 

.............................................................. 
No results for this annotation 

ANNOTATION LABEL [2] = r- 

.............................................................. 
Reference Tx frames = 1 l89 

Test Tx frames = 1184 



Tx hits = 95 111 l89 

Tx misses = 23811 189 

Tx total false alarms = 23311 184 

Tx voiced false alarms = 17911 184 

Tx unvoiced false alarms = 5411 184 

Absolute mean jitter in samples = 6.6 

Absolute sd jitter in samples = 12.9823 

Relative mean jitter in samples = 0.0120219 

Relative sd jitter in samples = 10.125 1 

Percent = 79.9832 

Percent = 20.0168 

Percent = 19.6791 

Percent = 15.1182 

Percent = 4.5608 1 

ANNOTATION LABEL [3] = r+ 

.............................................................. 
Reference Tx frames = 66 

Test Tx frames = 49 

Tx hits = 30166 

Tx misses = 36/66 

Tx total false alarms = 19/49 

Tx voiced false alarms = 1 1/49 

Tx unvoiced false alarms = 8/49 

Absolute mean jitter in samples = 654 

Absolute sd jitter in samples = 2.7389ei-07 

Relative mean jitter in samples = 14 

Relative sd jitter in samples = l8 15 

Percent = 45.4545 

Percent = 20.0168 

Percent = 38.7755 

Percent = 22.449 

Percent = 16.3265 

UTILITY PROGRAM TO MANAGE RUNNING OF PROGRAMS 

One important issue that arises when many stages of processing are carried out, all of 

which involve a large amount of processing, is what to do in the event of a computer 

crash. Clearly, one wishes to re-start programs in such a way that one can continue 

from the point reached just before the computer crash. A program to facilitate this was 

written as is called a (program management system). The program is run using the 

command line 



pms commandf~le 

This program operates by reading a list of command lines placed in the file 

<cornrnandfile>.run by the user. Each time a command line is executed, it is then 

written into the file <comrnandfile>.done. In the event of a computer crash (or any 

other circumstances which would kill all processes), the command lines can be re-started 

by re-typing the command line 

pms filename 

The pms program then reads in the <commandfile>.done file and the <commandfile>.run 

files, and continues by executing the command lines from just after the previously 

executed line. 



APPENDIX A.3: TEXT FOR THE RAINBOW PASSAGE 

NB: The individual paragraphs are labelled rpl-rp3. 

............... Today's date is the 

My name is ........................ 

THE RAINBOW PASSAGE 

(rpl) 

When the sunlight strikes raindrops in the air, they act like a prism and form a rainbow. 

The rainbow is the division of white light into many beautiful colours. 

PAUSE FOR 2 SECONDS 

(rp2) 

These take the shape of a long round arch with its path high above and its two ends 

apparently beyond the horizon. There is, according to legend, a boiling pot of gold at 

one end. 

PAUSE FOR 2 SECONDS 

(rp3) 

People look, but no-one ever finds it. When a man looks for something beyond his 

search, his friends say that he is looking for the pot of gold at the end of the rainbow. 



APPENDIX A.4: TEXT FOR ARTHUR THE RAT 

NB: The individual paragraphs are labelled arl-ar8. 

THE STORY OF ARTHUR THE RAT 

W )  

There was once a young rat named Arthur, who would never take the trouble to make 

up his mind. Whenever his friends asked him if he would like to go out with them, he 

would only answer, "I don't know." He wouldn't say "Yes" and he wouldn't say "No" 

either. He could never learn to make a choice. 

PAUSE FOR 2 SECONDS 

(82)  

His aunt Helen said to him, "No-one will ever care for you if you carry on like this. 

You have no more mind than a blade of grass." Arthur looked wise, but said nothing. 

PAUSE FOR 2 SECONDS 

(a31 

One rainy day the rats heard a great noise in the loft where they lived. The pine rafters 

were all rotten, and at last one of the joists had given way and fallen to the ground. The 

walls shook and the rats' hair stood on end with fear and horror. 

PAUSE FOR 2 SECONDS 

( ~ 4 )  

"This won't do," said the old rat who was chief. "I'll send out scouts to search for a 

new home." Three hours later the seven scouts came back and said, "We've found a 

stone house which is just what we wanted. There's m m  and good food for us all. 

PAUSE FOR 2 SECONDS 



( ~ 5 )  

There's a kindly horse named Nelly, a cow a calf and a garden with an Elm tree." Just 

then the old rat caught sight of Arthur. "Are you coming with us ?" he asked. 

PAUSE FOR 2 SECONDS 

( ~ 6 )  

"I don't know," Arthur sighed, "the roof may not come down just yet." "Well, said the 

old rat angrily, "we can't wait all day for you to make up your mind. Right about face! 

March!" And they went off. 

PAUSE FOR 2 SECONDS 

Arthur stood and watched the other rats hurry away. The idea of an immediate decision 

was too much for him. "I'll go back to my hole for a bit," he said to himself, "just to 

make up my mind." 

PAUSE FOR 2 SECONDS 

That night there was a great crash that shook the earth, and down came the whole roof. 

Next day some men rode up and looked at the ruins. One of them moved a board, and 

under it they saw a young rat lying on his side, quite dead, half in and half out of his 

hole. 

PAUSE FOR 2 SECONDS, AND SPEAK IN CREAKY VOICE 

(C+ar8) 

That night there was a great crash that shook the earth, and down came the whole roof. 

Next day some men rode up and looked at the ruins. One of them moved a board, and 

under it they saw a young rat lying on his side, quite dead, half in and half out of his 



hole. 



APPENDIX A.5: SUBJECT QUESTIONNAIRE FOR RECORDINGS 

RECORD OF DETAILS FOR SPEAKER AND ACOUSTIC ENVIRONMENT FOR 

MLP-TX DATABASE 

Date ................................... 

SPEAKER DETAILS 

Your Name .................................... 
.................................... Your age 

Male or Female ............................... 
............................... Your Weight 

.......................... Your Height ... 

SPEAKER ACCENT DETAILS 

Please list any regions of the UK or other countries in which you have lived for more 

than a year and indicate roughly how long you spent there 

REGION TIME 

....................a... ................. 

........................ ..............S.. 

........................ ................. 

...............a........ ................. 

Please give a general description of your parents' accents (if known), for example North 

of England, West Country, S.E.England, etc. 

..................................... Father 

Mother ..................................... 



GENERALHEALTH 

Are you under the care of a doctor at the moment for anything 

other than a purely physical injury (such as a broken leg)? 

Are you taking any prescribed drugs at the moment? 

Do you suffer from any respiratory disease or asthma'? 

Do you suffer from hay fever? 

Are you allergic to the house dust mite? 

Are you a diabetic? 

Do you have heart disease? 

Are any of your front teeth (top or bottom) missing? 

Have you ever had a general anaesthetic? 

As far as you can tell, do you think you have normal hearing? 

LEISURE ACTIVITIES 

Are you, or have you ever been a regular smoker? 

If YES: Have you been a regular smoker within the last year? YESIN0 

When smoking regularly. approximately how much would 

you smoke in a typical week? ................................. 



Have you drunk undiluted spirits within the last year? 

If YES: Do you drink undiluted spirits 

A) Rarely (for example, at christmas) 

B) Occasionally (a few times a year) 

C) Regularly (once a week or more) 

Have you drunk any diluted spirits within the last year? 

(for example, gin & tonic, rum & coke, etc). 

If YES: Do you drink diluted spirits 

A) Rarely (for example, at christmas) 

B) Occasionally (a few times a year) 

C) Regularly (once a week or more) 

Do you take part in  any activity which involves shouting 

or cheering (for example a football supporter)'? 

If YES, please say what the activity is, give some idea of 

how often you take part in it and say how recently you last 

did so? 

Do you take part in any activity in which you "project" your 

voice, for example, singing (solo or in a choir or group), 

acting teaching or lecturing? 

If YES, please say what the activity is, give some idea of 

how often you take part in it and say how recently you last 

did so? 



Do you attend discos or pop concerts where the levels of the 

music is sufficient for you to have to shout to your companions? YESIN0 

If YES: How long ago did you attend such an event? .................... 

How often would you expect to do so during 

a typical month? ..................... 

Do you take part in any other activity which involves shouting 

or using your voice in ways other than taking part in normal 

conversation? 

If YES, please say what the activity is, give some idea of 

how often you take part in it and say how recently you last 

did so? 

Do you use volatile chemicals at works or as part of you 

leisure activity? 

If YES, please say what the activity is, give some idea of 

how often you take part in it and say how recently you last 

did so? 



FINALLY 

Are you aware of anything not covered in this questionnaire 

which might affect your speaking voice or make it unusual in 

any way? 

If YES, please specify. 

.......................................................................... 

.......................................................................... 

.......................................................................... 

THANK YOU FOR YOUR COOPERATION 



INFORMATION TO BE FILLED IN BY RECORDER OPERATOR 

Building name and location. 

........................................................................... 

........................................................................... 

........................................................................... 

Room use for recordings. ................................................... 

Room height. ............... 

Room width. ............... 
Room length. ............... 

Does the room have carpets? 

Does the room have curtains? 

Is the room particularly reverberant or damped? 

VERY-REVERBERANTIVERY-DAMPED 

Height of microphone from ground. .......... 

Distance of microphone from two nearest walls. ........... ............. 

Is speaker sitting or standing? 

Distance of microphone to speaker. 

Distance of speaker from two nearest walls. 



Background noise level VERY LOW 

LOW 

MEDIUM 

HIGH 

VERY HIGH 

DBA reading ............ 

Background noise description ................................................ 

Microphone used 

Calibration level 



APPENDIX A.6: LIST OF ROOMS USED FOR RECORDINGS 

AR - Anechoic chamber, Gordon Square, Phonetics, UCL. 

Very low-noise and very low reverberation. 

HD - DR, Medium sized dinning m m ,  in a semi-detached house. Furnished with a 

carpet and curtains. 

RRB - Recording room B, Wolfson House, Phonetics, UCL. 

Medium-sized low-noise recording room. 

RRC - Recording room C, Wolfson House, Phonetics, UCL. 

Small low-noise recording room. 

SSL - Speech science laboratory, Wolfson House, Phonetics, UCL. 

Large room with low-level car traffic background noise. 

SSCR - Speech science common room, Wolfson House, Phonetics, UCL. 

Large room with little background noise. 

CIR - Cochlear implants room, Guy's Hospital, London. 

Long narrow room with air-conditioning background noise. 

PD - Room 409, Psychology, UCL, Bedford Way, London. 

Small m m  with loud car traffic background noise. 

GR - Green Room, Monarch House, Ace Editing, Acton, London. 

Large room with background office noise. 



APPENDIX A.7: LIST OF FILENAMES AND THEIR CORRESPONDING SPEAKERS 

This list provides details of the speech and laryngograph data acquired into files onto 

the computer system. For each test datafile, the speech material used, the speaker's 

name, the speaker's age, the recording distance and recording location are provided. 

(Note: not all information was avaliable for all subjects). 

The filename was constructed to represent the identity of the speaker (the characters 

before the first point), to explicitly identify male and female speakers (either a "f' or an 

"m" after the point), and to explicitly identify the speech passage (arl-ar8 and rpl-rp3. 

The latter correspond to the paragraph labels given in appendices 3 & 4 for Arthur the 

Rat and the Rainbow passage respectively. 

TRAINING DATA: ALL RECORDED USING F I X E D  DISTANCE HEAD-MOUNTED 

MICROPHONE 

F I LEMANE 

e a 2 .  f a r l  

e a 2 .  f a r 2  

e a 2 .  f a r 3  

e a 2 . f a r 4  

e a 2 .  f a r 5  

e a 2 .  f a r 6  

e a 2 . f a r 7  

e a 2 .  f a r8  

ea2. f r p l  

e a 2 .  f r p 2  

e a 2 .  f r p 3  

ea3. f r p l  

ea3. f r p 2  

ea3. f r p 3  

v b 2 .  f a r l  

v b 2 .  f a r 2  

v b 2 .  f a r 3  

vb2. f a r 4  

v b 2 .  f a r5  

DATA 

a r l  

a r 2  

a r3  

a r 4  

a r5  

a r 6  

a r 7  

a r8  

r p  l 

rp2 

rp3  

r p  l 

r p 2  

rp3 

a r l  

ar2 

a r 3  

a r 4  

NAME SEX RECORDING ROOM 

E v e l y n  A b b e r t o n  

E v e l y n  A b b e r t o n  

E v e l y n  A b b e r t o n  

E v e l y n  A b b e r t o n  

E v e l y n  A b b e r t o n  

E v e l y n  A b b e r t o n  

E v e l y n  A b b e r t o n  

E v e l y n  A b b e r t o n  

E v e l y n  Abberton 

E v e l y n  A b b e r t o n  

E v e l y n  A b b e r t o n  

E v e l y n  Abberton 

E v e l y n  A b b e r t o n  

E v e l y n  A b b e r t o n  

G i n n y  B a l l  

G i n n y  B a l l  

G i n n y  B a l l  

G i n n y  B a l l  

G i n n y  B a l l  

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, AR 

UCL, AR 

UCL, AR 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 



vb2.far6 ar6 

vb2.far7 ar7 

vb2.far8 ar8 

vb2. frpl rpl 

vb2. frp2 rp2 

vb2.frp3 rp3 

vb3.frpl rpl 

vb3. frp2 rp2 

vb3.frp3 rp3 

tmd.far1 arl 

tmd.far2 ar2 

tmd.far3 ar3 

tmd.far4 ar4 

tmd.far5 ar5 

tmd.far6 ar6 

tmd.far7 ar7 

tmd.far8 ar8 

tmd.frp1 rpl 

tmd. frp2 rp2 

tmd.frp3 rp3 

tsh.far1 arl 

tsh.far2 ar2 

tsh.far3 ar3 

tsh.far4 ar4 

tsh.far5 ar5 

tsh.far6 ar6 

tsh.far7 ar7 

tsh.far8 ar8 

tsh.frp1 rpl 

tsh.frp2 rp2 

tsh.frp3 rp3 

tih.mar1 arl 

tih.mar2 ar2 

tih.mar3 ar3 

tih.mar4 ar4 

tih.mar5 ar5 

tih.mar6 ar6 

Ginny Ball 

Ginny Ball 

Ginny Ball 

Ginny Ball 

Ginny Ball 

Ginny Ball 

Ginny Ball 

Ginny Ball 

Ginny Ball 

Maria Dahl 

Maria Dahl 

Maria Dahl 

Maria Dahl 

Maria Dahl 

Maria Dahl 

Maria Dahl 

Maria Dahl 

Maria Dahl 

Maria Dahl 

Maria Dahl 

Sylvia Howard 

Sylvia Howard 

Sylvia Howard 

Sylvia Howard 

Sylvia Howard 

Sylvia Howard 

Sylvia Howard 

Sylvia Howard 

Sylvia Howard 

Sylvia Howard 

Sylvia Howard 

Ian Howard 

Ian Howard 

Ian Howard 

Ian Howard 

Ian Howard 

Ian Howard 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, AR 

UCL, AR 

UCL, AR 

UCL, SSCR 

UCL, SSCR 

UCL, SSCR 

UCL, SSCR 

UCL, SSCR 

UCL, SSCR 

UCL, SSCR 

UCL, SSCR 

UCL, SSCR 

UCL, SSCR 

UCL, SSCR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 



tih.mar7 

tih.mar8 

tih-mrpl 

tih.mrp2 

tih.mrp3 

rb2 .mar1 

rb2 .mar2 

rb2. mar3 

rb2. mar4 

rb2. mar5 

rb2. mar 6 

rb2 .mar7 

rb2. mar8 

rb2. mrpl 

rb2. mrp2 

rb2. mrp3 

jd2 .mar1 

jd2. mar2 

jd2 .mar3 

jd2 .mar4 

jd2. mar5 

jd2 .mar6 

jd2 .mar7 

jd2 .mar8 

jd2 .mrpl 

jd2. mrp2 

jd2. mrp3 

ar7 

ar8 

rPl 

rp2 

rp3 
arl 

ar2 

ar3 

ar4 

ar5 

ar6 

ar7 

ar8 

rp l 

rp2 

rp3 
arl 

ar2 

ar3 

ar4 

ar5 

ar6 

ar7 

ar8 

rP l 

rp2 

rp3 

EVALUATION TEST 

F I LENAME 

eco. mrpl 

ehd. f rpl 

ero . mrp2 
ego. mrp3 

emh. mar1 

ear. mar2 

ekj.mar3 

Ian Howard 

Ian Howard 

Ian Howard 

Ian Howard 

Ian Howard 

Richard Baker 

Richard Baker 

Richard Baker 

Richard Baker 

Richard Baker 

Richard Baker 

Richard Baker 

Richard Baker 

Richard Baker 

Richard Baker 

Richard Baker 

Julian Daley 

Julian Daley 

Julian Daley 

Julian Daley 

Julian Daley 

Julian Daley 

Julian Daley 

Julian Daley 

Julian Daley 

Julian Daley 

Julian Daley 

DATA 

NAME 

Con Onisiphone 

Hilary Dodson 

Roger 

rp3 Godfrey 

arl Marcus Hampshire 

ar2 Andrew Rendell 

ar3 Ken Joyce 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

M 

SEX 

M 

F 

M 

M 

M 

M 

M 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

HD, DR 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

UCL, RRC 

AGE DIST 

35 0.6m 

0.8m 

0.8m 

0.6m 

27 1.0m 

27 1.3m 

29 3.0m 

ROOM 

GH, CIR 

GH, CIR 

GH, CIR 

GH, CIR 

MH, GR 

MH, GR 

MH, GR 



ejt.frp2 rp2 

epf.mar4 ar4 

enn.mar5 ar5 

ean.mar6 ar6 

eaf.mar7 ar7 

ebs.frp3 rp3 

eag.far1 arl 

erc.far3 ar3 

ejd.far4 ar4 

eCfa.far7 ar7 

efa. far5 ar5 

esr.far6 ar6 

ejr.far6 ar7 

Joanne Thomson 

Perry Foran 

Nitan Negandhi 

Alfred Ng 

Andrew Faulkner 

Beatrice Sayers 

Ann Guyon 

Rosie Casson 

Judy Davies 

Freda Ali 

Freda Ali 

Suzanne Riley 

Janet Rowland 

FINAL TESTING DATA 

FILENAME DATA 

fgt.mrp1 rpl 

fmg.frp1 rpl 

fsa. frp2 rp2 

fcb.mrp3 rp3 

fxp. frp3 rp3 

fjv.mar4 ar4 

fsa.mar6 ar6 

fjr.far1 arl 

fre.mar3 ar3 

fjd.mar1 arl 

fjh.mar8 ar8 

fdqh.mar7 ar7 

fpe.far3 ar3 

frb. french fp 

fdmh. mrp2 rp2 

fmj .mrp3 rp3 

fsn.mrp1 rpl 

fss.mar1 arl 

fgl .mar2 ar2 

fjh.far4 ar4 

fje.frp2 rp2 

NAME 

Graham Taylor 

Marilyn George 

Sarah Allen 

Chris Banaham 

Xanthe Parkin 

John Vigar 

Simon Ashcroft 

Judy Reddaway 

Richard Elerson 

James Duncan 

James Howard 

David Howard 

Patricia Evans 

Remi Brun 

David Howard 

Mike Johnston 

Steven Nevard 

Steve Sakin 

Geoff Linsey 

Jill House 

Jane 'Espinasse 

F 

M 

M 

M 

M 

F 

F 

F 

F 

F 

F 

F 

F 

SEX 

M 

F 

F 

M 

F 

M 

M 

F 

M 

M 

M 

M 

F 

M 

M 

M 

M 

M 

M 

F 

F 

20 

30 

2 6 

2 9 

38 

23 

37 

20 

32 

22 

22 

2 1 

23 

AGE 

43 

26 

27 

30 

28 

50 

27 

21 

23 

28 

21 

18 

55 

25 

33 

34 

4 0 

23 

30 

45 

45 

2.5m 

2.5m 

3.0m 

2.0m 

1.5m 

0.7m 

1.3m 

0.8m 

0.4m 

0.9m 

0.9m 

1.2m 

1.3m 

DIST 

1.2m 

0.6m 

0.9m 

1.0m 

1.5m 

3.0m 

1.5m 

2.0m 

1.0m 

1.0 

2.0m 

1.5m 

l. lm 

0.5m 

l.lm 

0.7m 

MH, GR 

MH, GR 

MH, GR 

UCL, SSL 

UCL, SSL 

UCL, SSL 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRA 

UCL, RRA 

UCL, RRA 

UCL, RRA 

ROOM 

GH, CIR 

GH, CIR 

GH, CIR 

MH, GR 

MH, GR 

MH, GR 

MH, GR 

MH, GR 

MH, GR 

MH, GR 

HD, DR 

HD, DR 

HD, DR 

UCL, SSL 

UCL, SSL 

UCL, SSL 

UCL, SSL 

UCL, SSL 

UCL, SSL 

UCL, SSL 

UCL, SSL 



fba. frp3 rp3 

far-far1 arl 

fjor.far3 ar3 

fbh.far2 ar2 

fmag.far4 ar4 

fmag.far6 ar6 

feg.far8 ar8 

f jc.far5 ar5 

fcis.far6 ar6 

faCjf.mar8 ar8 

fajf.mrp1 rpl 

fdb.frp3 rp3 

fed.far1 arl 

fdv. frp2 rp2 

fab. far2 ar2 

fvh.far7 ar7 

fjs.mrp3 rp3 

fky.mar2 ar2 

ftt .mrp2 rp2 

fshs .mar1 arl 

fme.far4 ar4 

Bridget Allen 

Alison Rumbold 

Joe Robson 

Barbera House 

Martha Gibson 

Martime Grice 

Emma Gash 

Jean Chambers 

Cindy Strictland 

Adrian Fourcin 

Adrian Fourcin 

Donna Blakemore 

Emma Daniels 

Deborah Vickers 

Ashleigh Bullen 

Valarie Hazan 

John Scoyles 

Keith Young 

Thiery Towllelan 

Shah Shahidi 

Maeve Ennis 

UCL, SSL 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, SSL 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRB 

UCL, RRA 

UCL, RRA 

UCL, RRA 

UCL, RRA 

UCL, RRB 

UCL, PD 

UCL, PD 

UCL, PD 

UCL, PD 

UCL, PD 



APPENDIX A.& FREQUENCY DISTRIBUTION HISTOGRAMS FOR TRAINING 

AND FINAL TESTING DATA 



fdv.frp2 Speaker: dv Duration: 13.4 S 
Mean: 184.4 Hz Sdev: 26 % Skewness: -2.5, Kurtosis: 17.9 
11 41 / l  l 6 7  values Bin width: 2.8% Order: 1 Deviation: 2.8% 

fjw.china Speaker: j w  Duration: 20.0 S 

Mean: 21 6.5 Hz Sdev: 3 0  % Skewness: -1.5, Kurtosis: 4.3 
1980/2028 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

. . 

30 50 70 100 200 300 500 700 
Fx Frequency H z 



f jor . far3 Speaker: jor Duration: 15.0 S 
Mean: 21 2.8  Hz Sdev: 24 % Skewness: -1.5, Kurtosis: 15.1 
l389/1429 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency Hz 

fcis.far6 Speaker: cis Duration: 13.4 S 
Mean: 182.8 Hz Sdev: 29 % Skewness: -1.6, Kurtosis: 7.7 
1033/1061 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 



fxp.frp3 Speaker: xp Duration: 10.8 S 

Mean: 190.4 Hz Sdev: 2 5  % Skewness: -2.6, Kurtosis: 13.5 
845/871 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency H z 

far.far1 Speaker: or Duration: 19.6 S 
Mean: 235.9 Hz Sdev: 2 0  % Skewness: -3.9, Kurtosis: 33.3 
1833/1879 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 



f jh. far4 Speaker: jh Duration: 17.4 S 

Mean: 200.6 Hz Sdev: 45  % Skewness: -0.3, Kurtosis: 1 . l  
1 135/1 171 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

fmg.frp1 Speaker: m g  Duration: 12.0 S 
Mean: 194.1 Hz Sdev: 23  % Skewness: -1.9, Kurtosis: 13.5 
1084/1 11 2 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 
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fmog. for4 Speaker: mog Duration: 16.2 S 
Mean: 196.5 Hz Sdev: 43  % Skewness: -0.4, Kurtosis: 1.0 
1 2 6 l / l 3 0 3  values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70  100 200 300 500 700 
Fx Frequency H z 

fmag.for-6 Speaker: mag Du~at ion :  19.4 S 

Mean: 220.8 Hz Sdev: 25  % Skewness: -0.9, Kurtosis: 7.7 
1353/138l  values Bin width: 2.8% Order: 1 Deviation: 2.8% 



fbh.far-2 Speaker: bh Duration: 12.8 S 

Mean: 21 2.5 Hz Sdev: 21  % Skewness: -1.6, Kurtosis: 8.6 
1 1 O4/l 129 values Bin width: 2.8% Order: 1 Deviaiion: 2.8% 

fvh.far7 Speaker: vh Duration: 1 1.2 S 

Mean: 179.1 Hz Sdev: 2 5  % Skewness: -2.1, Kurtosis: 12.6 
856/886 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 



fpe.far3 Speaker: pe Duration: 16.6 S 

Mean: 202.1 Hz Sdev: 21 % Skewness: -3.5, Kurtosis: 28.4 
l63O/l663 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency Hz 

feg.far-8 Speaker: eg Duration: 16.6 S 
Mean: 249.3 Hz Sdev: 14 % Skewness: -5.3, Kurtosis: 67.0 
1646/1685 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency Hz 



fme. for4 Speaker: me Duration: 16.2 S 
Mean: 217.6 Hz Sdev: 3 5  % Skewness: -0.9, Kurtosis: 1.3 
l469/1506 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 

f je.frp2 Speaker: je Duration: 10.0 S 

Mean: 186.1 Hz Sdev: 25  % Skewness: - 1.8, Kurtosis: 1 1 . l  
922 /952  values Bin width: 2.8% Order: 1 Deviation: 2.8% 

, . .  . . 

3 0 50 70 100 200 300 500 700 
Fx Frequency HZ 



fdb.frp3 Speaker: db Duration: 12.0 S 
Mean: 220.8 Hz Sdev: 26 % Skewness: -3.6, Kurtosis: 23.0 
lO49/lOi'4 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency Hz 

fed- far1 Speaker: ed Duration: 19.8 S 

Mean: 246.1 Hz Sdev: 28 % Skewness: -1.9, Kurtosis: 12.6 
2200/2241 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency Hz 



fba.frp3 Speaker: ba Duration: 10.4 S 
Mean: 229.7 Hz Sdev: 2 3  % Skewness: -2.7, Kurtosis: 16.3 
1 O93/l 1 I 7  values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 

fsa.frp2 Speaker: sa Duration: 11.8 S 

Mean: 171.4 Hz Sdev: 2 2  % Skewness: -3.4, Kurtosis: 19.5 
1048/1076 values Bin width: 2.8% Order: 1 Deviation: 2.87. 
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30 50 70 100 200 300 500 700 
Fx Frequency H z 



f jv.rnar4 Speaker: jv Duration: 15.4 S 
Mean: 141.0 Hz Sdev: 2 4  % Skewness: -0.4, Kurtosis: 5.5 
1 O48/lO85 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 

fky.mar2 Speaker: ky Duration: 10.4 S 

Mean: 140.5 Hz Sdev: 39 % Skewness: -0.2, Kurtosis: -0.7 
722/745 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency H z 



fgt.mrp1 Speaker: gt Duration: 9.8 S 

Mean: 98.7 Hz Sdev: 22 % Skewness: -0.6, Kurtosis: 4.3 
51 4/534 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency H z 

f t t .mrp2 Speaker: t t  Duration: 14.8 S 

Mean: 1 12.1 Hz Sdev: 17 % Skewness: -1.8, Kurtosis: 7.3 
899/925 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 



f j s .mrp3 Speaker: js Duration: 13.0 S 

Mean: 150.1 Hz Sdev: 20 % Skewness: 0.0, Kurtosis: 
766/795 values Bin width: 2.8% Order: 1 Deviation: 2 

fss.mar1 Speaker: ss Duration: 16.4 S 

Mean: 95.0 Hz Sdev: 27 % Skewness: -0.1, Kurtosis: 0.9 
826/858 values Bin width: 2.8% Order: 1 Deviation: 2.8% 
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fsn.mrp1 Speaker: sn Duration: 11.0 S 

Mean: 116.6 Hz Sdev: 21 % Skewness: -0.6, Kurtosis: 4.8 
594/615 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency H z 

fshs.mar1 Speaker: shs Duration: 19.6 S 

Mean: 109.0 Hz Sdev: 20 % Skewness: - 1.2, Kurtosis: 10.4 
1004/1038 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 



fmj .mrp3 Speaker: mj Duration: 12.6 S 
Mean: 140.3 Hz Sdev: 2 3  % Skewness: -0.4, Kurtosis: 3.3 
696/716 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency H z 

fgl.mar2 Speaker: gl Duration: 12.0 S 

Mean: 120.1 Hz Sdev: 2 4  % Skewness: -0.2, Kurtosis: 1.6 
655/677 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency H z 



fdmh.mrp2 Speaker: dmh Duration: 13.6 S 

Mean: 148.5 Hz Sdev: 32 % Skewness: -0.3, Kurtosis: 0.5 
885/914 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 
Fx Frequency 

fdqh.mar7 
Mean: 153.0 Hz 
825/851 values 

Speaker: dqh Duration: 13.2 S 

Sdev: 3 3  % Skewness: -0.4, Kurtosis: 0.0 
Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency H z 



fa j f .mrp1 Speaker: ajf Duration: 11.4  S 

Mean: 126.4 Hz Sdev: 25 % Skewness: -0.5, Kurtosis: 2.4 
660/680 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency H z 

30 50 70 100 200 300 500 700 
Fx Frequency H z 

f jh .mar8 Speaker: jh Duration: 17.0 S 

Mean: 145.6 Hz Sdev: 26 % Skewness: -2.2, Kurtosis: 9.0 
1063/1094 values Bin width: 2.8% Order: 1 Deviation: 2.8% 
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f re.mar3 Speaker: re Duration: 17.4 S 

Mean: 100.7 Hz Sdev: 20 % Skewness: -0.4, Kurtosis: 5.5 
710/743 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency H z 

fCajf .mar8 Speaker: ajf Duration: 20.0 S 

Mean: 103.3 Hz Sdev: 39 % Skewness: - 1  . l ,  Kurtosis: 1.2 
101 7/lO45 values Bin width: 2.8% Order: 1 Deviation: 2.8% 



frb.french Speaker: rb Duration: 20.0 S 
Mean: 133.6 Hz Sdev: 1 7  % Skewness: -0.9, Kurtosis:  6.3 
1 247 /1303 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

-: :: 
iji 

I ' 1 ' ' 3 " . L ' 1 " i  

3 0 50 70 100 200 300 500 700 
Fx Frequency Hz 

f jd.mar1 Speaker: jd Duration: 18.4 S 
Mean: 120.0 Hz Sdev: 14 % Skewness: -1.4, Kurtosis: 16.0 
1000/1041 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency H z 



fsa.mar6 Speaker: so Duration: 19.4 S 
Mean: 124.1 Hz Sdev: 36 % Skewness: -0.5, Kurtosis: 1.7 
121 3/124O values Bin width: 2.8% Order: 1 Deviation: 2.8% 

C 

3 0 50 70 100 200 300 500 700 
Fx Frequency Hz 

fcb.mrp3 Speaker: cb  Duration: 9.8 S 

Mean: 105.2 Hz Sdev: 19 % Skewness: -1.2, Kurtosis: 6.5 
482/502 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency H z 



l l f i les, Speaker: IH Duration: 147.2 S 

Mean: 133.7 Hz Sdev: 25 % Skewness: - 1  . l ,  Kurtosis:  6.3 
8988/9296 values Bin width: 2.8% Order: ! Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 

12 files, Speaker: DM Duration: 155.8 S 

Mean: 98.8 Hz Sdev: 28 % Skewness: -1.5, Kur tos is :  4.3 
5517/5940 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency H z 



10 files, Speaker: RB Duration: 140.2 S 
Mean: 106.3 Hz Sdev: 19 % Skewness: -1.4,  Kurtosis: 8 .0 
6536/6842 values Bin width: 2.8% Order: ? Deviation: 2.8% 

12 f i les, Speaker: JD Duration: 168.8 S 

Mean: 103.7 Hz  Sdev: 28 % Skewness: -0.8, Kurtosis: 3.6 
7423/7795 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency Hz 



l l f i les, Speaker: SJH Duration: 156.4 S 

Mean: 221 . l  Hz Sdev: 31 % Skewness: -0.6, Kur tos is :  4.2 
l6177/I 6508 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency Hz 

14 files, Speaker: VB Duration: 207.8 S 

Mean: 201.1 Hz Sdev: 21 % Skewness: -1.4, Kurtosis: 13.2 
191 92/19635 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency Hz 



14 files, Speaker: EA Duration: 195.4 S 

Mean: 195.9 Hz Sdev: 30 % Skewness: -0.2, Kurtosis: 2.6 
l7895/18283 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

3 0 50 70 100 200 300 500 700 
Fx Frequency H z 

I l files, Speaker: MD Duration: 168.4 S 

Mean: 224.0 Hz Sdev: 24 % Skewness: -1.4, Kurtosis: 9.5 
l81 44/l8457 values Bin width: 2.8% Order: 1 Deviation: 2.8% 

30 50 70 100 200 300 500 700 
Fx Frequency H z 



APPENDIX A.9: RESULTS FROM PRELIMINARY TESTING DATA 

The results of the investigation of MLP parameters for the direct speech, wideband 

filterbank and auditory filterbank experiments are given here in the appendix. 

KEY TO EXPERIMENTS 

Adaption refers to the use of the adaption of the learning rate and momentum terms for 

the training of the MLP. 

Selective emphasis refers to the use of selective emphasis training of the MLP. 

Update refers to the number of patterns that were used to estimate the weight updates 

during training. 

TITLE- Comparing training parameters using TMS filterbank. 

PURPOSE - Show effect of training parameters. 

MLP network structure 246-6-6-1 

Average results given for 10 women from evaluation data set. 

All trained for 1 pass over all female training data, except last experiment. 

ueOaO - trained selective emphasis, update=l, no adaption. 

ueOa2 - trained selective emphasis, update=l, adaption. 

ue2aO - trained selective emphasis, update=lOO, no adaption. 

ue2a2 - trained selective emphasis, update=100, adaption. 

ue3a2 - trained selective emphasis, update=1000, adaption. 

u1aOn - no selective emphasis, update=l, no adaption 

ul aOnl - ignore uncertain zones, update=l, no adaption 

ululOOulOO0 trained selective emphasis for three passes: pass 1, update=l, no adaption; 

pass 2, update=lOO, adaption; pass 3, update=1000, adaption. 

TITLE- Comparing training data using sp. 

PURPOSE - Show effect of MLP structure and using male, female, and male + female 

training data with direct speech input to the MLP. 

Average results given separately for 10 men and 10 women from evaluation data set. 

All input windows are symmetrical. 



All MLPs trained selective emphasis for three passes: pass 1, update=l, no adaption; 

pass 2, update=100, adaption; pass 3, update=1000, adaption. An overall pass 

corresponds to the three stages above. 

sp664f32 - MLP 161- 10-1, trained on women, 2 overall passes. 

sp663m23 - MLP 161-10-1, trained on men, 2 overall passes. 

explp3 - MLP 161-10-1, trained on men and women. 

exp2p3 - MLP 161-5-1, trained on men and women. 

exp4p3 - MLP 161-20- 1, trained on men and women. 

exp5p3 - MLP 16 1 - 1, trained on men and women. 

exp6p3 - MLP l61 - 10- 10- 1, trained on men and women. 

exp7p3 - MLP 321 - 10-1, trained on men and women. 

exp8p3 - MLP 321- 10- 1, trained on men, 2 overall passes. 

TITLE- Comparing training data using fb. 

PURPOSE - Show effect of MLP structure and using male + female training data with 

reduced wideband filterbank input to the MLP. 

Average results given separately for 10 men and 10 women from evaluation data set. 

Offset refers to the relationship between the current frame and the start of the window. 

If the offset is not half the window-l, then the window is asymmetric. 

All MLPs trained selective emphasis for three passes over male and female training data: 

pass 1, update=l, no adaption; pass 2, update=100, adaption; pass 3, update=1000, 

adaption. 

fbexplOp3 - MLP 246-1, offset=20 frames. 

fbexpl lp3 - MLP 246-3-1, offset=20 frames. 

fbexpl2p3 - MLP 246-6- 1, offset=20 frames. 

fbexp l3p3 - MLP 246- 12- 1, offset=20 frames. 

fbexp l4p3 - MLP 246-6-6- 1, offset=20 frames. 

TITLE- Comparing auditory filterbank parameters. 

PURPOSE - Show effect of MLP structure and using male and male + female training 

data with simple auditory filterbank input to the MLP. 

Average results given separately for 10 men and 10 women from evaluation data set. 



All auditory filterbanks use lERB filter spacings. 

All input windows symmetrical and 20.5 ms. 

All MLPs trained selective emphasis for three passes over training data: pass 1, 

update=l, no adaption; pass 2, update=100, adaption; pass 3, update=1000, adaption. 

afbl k66f - MLP 533-6-1, trained on women, 50-1kHz filter range. 

afb3k66f - MLP 943-6-1, trained on women, 50-3kHz filter range. 

afbexp20 - MLP 943-1, trained on women, 50-3kHz filter range. 

afbexp21 - MLP 943-3-1, trained on women, 50-3kHz filter range. 

afbexp22 - MLP 943-12-1, trained on women, 50-3kHz filter range. 

afbexp23 - MLP 943-6-6-1, trained on women, 50-3kHz filter range. 



THERE ARE 9 DIFFERENT EXPERIMENTS - -  - 

EXPS u e O a O  u e O o 2  ~ e 2 a O  u e 2 0 2  u e 3 a 2  u l o O n  u l a O n z  u l a O n l  u l u l O O u l O O O  
RESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F I L E S  

FILENAMES f f  f 2  f 3  14 f 5  16 f 7  :8  1 9  f l O  

THERE ARE 9 DIFFERENT EXPERIMENTS 
EXPS. u e O a O  u e O a 2  u e 2 a 0  u e 2 a 2  u e 3 a 2  u l o O n  u l a O n z  u l a O n l  u l u l O O u l O O O  

RESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F ILES 
FILENAMES: : l  12 f3 f 4  15 i 6  f 7  ' 8  f9 f 1 0  



1 2 3 4 5 6 7 8 9  
-dERE ARE 9 DIFFERENT EXPERIMENTS 

E X P S -  ueOaO ueOa2 ue2aO ue2a2 ue3o2 ulaOn ulaOnz uioOnl ulu100u1000 
RESULTS ARE AVERAGED OVER 10 D I F F E R E N T  SPEECH DATA F i L E S  

FILENAMES 1 1  12 13 14 15 16 17 18 19 f : O  

1 2 3 4 5 6 7 8 9  
THERE ARE 9 DIFFERENT EXPERIMENTS 

EXPS: ueOoO ueOa2 ue2a0 ue2o2 ue3a2 ulaOn ulaOnz uloOni ululOOulOOO 
RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  

FILENAMES: f l  f2 f3 f4  f 5  16 f 7  f8  f 9  '10 



THFRF ARF 9 DIFFERENT EXPERIMENTS - . . - . - . . 
u e O o O  u e 0 0 2  u e 2 a 0  u e 2 a 2  u e 3 0 2  u l o O n  u l o O n z  u l a O n l  u l u l O O u l O O O  
9ESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F I L E S  

FILENAMES: f l  1 2  1 3  f 4  f 5  ' 6  !7 1 8  f9  1 1 0  

1 2 3 4 5 6 7 8 9  
THERE ARE 9 DIFFERENT EXPERIMENTS 

EXPS:  u e O a O  u e O a 2  u e 2 0 0  u e 2 a 2  u e 3 a 2  u 1 0 0 n  u l o O n z  u l a O n l  u l u 1 0 0 u 1 0 0 0  
SESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F L E S  

F ILENAMES:  ! l  12 13 14 15 15 17 18 19 1 1 0  



THERE ARE 9 DIFFERENT EXPERIMENTS 
CXPS ~ ~ 6 6 4 1 3 2  s066h-23  s p e x p l p 3  spexp2p3 spexp4p3 spexp5p3  spexp6p3  spexp7p3 spexpap3 

nESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
'1-ENAMES m 1  m2 m3 m4 m5 m6 m 7  m8 d m10 

1 2 3 4 5 6 7 8 9  
THERE ARE 9 D I F F E R E N T  EXPERIMENTS 

E X P S :  s p 6 6 4 f 3 2  s p 6 6 W 3  s p e x p l p 3  spexp2p3 spexp4p3 spexp5p3  spexp6p3 spexp7p3 spexp8p3 
RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  

F ILENAMES:  11 12 13 14 15 16 f 7  f8  19 110 



THERE ARE 9 D I F F E R E N T  EXP 
FYP+ z n 6 ~ 4 f 5 7  ~ 0 6 6 ~ 3  s p e x p l p 3  s p e x p 2 p 3  s p e x p 4 p 3  s p e x p 5 p 3  s p e x p 6 p 3  - - 



ZOMPARING-TRAINING-DATA-USING-SP MEN 
50 

4 5 

4 0  

5 35 
g E 30 

1 D U 

2 25 
0 

5 
20 

l a 

F l5 
P 

1 0  

5 

0 
1 2 5 4 5 6 7 8 9  

THERE ARE 9 DIFFERENT EXPERIMENTS 
E's5 sp664 f32  s p 6 6 N 3  spexp lp3  spexp2p3 spexp4p3 spexp5p3 spexp6p3 spexp7p3 soexoBp3 

RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
; LENAMES m1 m i  m3 m4 m5 m6 m7 rr-8 rr6 m 1 0  

THERE ARE 9 DIFFERENT EXPERIMENTS 
EXPS: s p 6 6 4 f 3 2  s p 6 6 H 3  s p e x p l p 3  spexp2p3 spexp4p3 spexp5p3  spexp6p3 spexp7p3 spexpBp3 

RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
FILENAMES: 11 f 2  ( 3  14 15 16 f 7  18 19 110 



THERE ARE 9 DIFFERENT EXPERIMENTS 
EYFS s o b 6 4 1 3 2  s p 6 6 L M 3  spexplp3 spexp2p3 spexp4p3 spexp5p3 spexp6p3 spexp7p3 spexp8p3 

RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
FILENAMES m1 m2 m3 m4 m5 m5 m7 m? nB m10 

THERE ARE 9 DIFFERENT EXPERIMENTS 
EXPS: sp664f32  s p 6 6 W 3  spexp lp3  spexp2p3 spexp4p3 spexp5p3 spexp6p3 spexp7p3 spexp8p3 

RESULTS ARE AVERAGED OVER 10  DIFFERENT SPEECH DATA F I L E S  
FILENAMES:  11 f 2  13 14  15 16 f 7  18 l 9  110 



TVFRE ARE 9  DIFFERENT EXPERIMENTS 
EXPS sp564132  sp663m23 s p e x p l p 3  spexp2p3 spexp4p3 spexp5p3 spexp6p3  spexp7p3 spexp8p3 

RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
FILEYAMES:  m1 m2 r d  nrl r r 6 n S r n 7  d d  m 1 0  

1 2 3 4 5 6 7 8 9  
THERE ARE 9  DIFFERENT EXPERIMENTS 

EXPS: s p 6 6 4 f 3 2  sp66Jm23 s p e x p l p 3  spexp2p3 spexp4p3 spexp5p3 spexp6p3  spexp7p3  spexp8p3  
RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  

FILENAMES: f l  12 f 3  f 4  15 16 17 18 19 1 1 0  



COMPARING-TRAINING-DATA-USING-SP:MEN 
6 5  

6 0  

5 5  

50 

4  5  

2 4 0  

3 5  
cc 

30 

5 25 

2 0  

15 

10 

5 

0 
l 2 3 4 5 6 7 8 9  

THERE ARE 9 DIFFERENT EXPERIMENTS 
EXPS ~ ~ 6 6 4 1 1 2  s p 6 6 M 3  spexp lp3  spexp2p3 s p e x ~ 4 p 3  spexp5p3 spexp6p3 spexp7p3 spexp8p3 

?ESULTS A R E  AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
FiLENAMES: m1 m2 m3m4 m5 m5 m7 r r 8 d  m10 

1 2 3 4 5 6 7 8 9  
THERE ARE 9 DIFFERENT EXPERIMENTS 

EXPS-  sp664132 s p 6 6 W 3  spexp lp3  spexp2p3 spexp4p3 spexp5p3 spexp6p3 spexp7p3 spexp8p3 
RESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F I L E S  

FILENAMES: f l  12 ( 3  1 4  15 16 17 18 f 9  110 



*HERE ARE 10 DIFFERENT EXPERIMENTS 
EXPS I b e x p l o p 3  I S a x p l l p 3  f b e x p l 2 p 3  'besp13p3  f b e x p l 4 p 3  f b s x p 1 7 p 3  f b e x p l 8 p 3  f b e x p l 9 p 3  exp lap5 i -co -3  e x p l 4 p 3 t c o n  

QESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
' LENAMES m1 m2 m3 -d r5 r 6  m7 m8 nB m10 

l 2 3 4 5 6 7 8 9 1 0  
THERE ARE 1 0  DIFFERENT EXPERIMENTS 

EXPS: fbexp lOp3  f b e x p l l p 3  f b e x p l 2 p 3  f b e x p l 3 p 3  lbexp14p3  lbexp17p3  l b e x p l 8 p 3  f b e x p l 9 p 3  e x p l 4 p 5 t c o n 3  e x p l 4 p 5 t c o n  
RESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F I L E S  

FILENAMES:  11 12 13 f 4  15 16 17 18 19 110 



I L 

l 1  

1 0  

7 9  

8 B 
(L 

Y 7 
3 : 
X 

5  
0 
y 4 
- 

9 5 3  

2 

l 

O  l 2 3 4 5 6 7 8 9 1 0  
THERE ARE 10 DIFFERENT EXPERIMENTS 

F X P S  f u e x o i j u 3  I b w p l l p 3  f b e x p 1 2 p 3  f b e x p l 3 p 3  f b e x p 1 4 p 3  f b e x p 1 7 p 3  f b e x p l 8 p 3  f b e x p l 9 p 3  e x p l 4 p > c o n 3  e x p l 4 p 5 t c o n  
RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  

FILENAMES: m1 m i  m3m4 m 5 m 6  m7 r r 8 d  m 1 0  

EXPS: 

V 
l 2 3 4 5 6 7 8 9 1 0  

THERE ARE 1 0  DIFFERENT EXPERIMENTS 
f b e x p 1 2 p 3  f b e x p l 3 p 3  f b e x p l 4 p 3  f b e x p 1 7 p 3  f b e x p l B p 3  f b e x p l 9 p 3  

RESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F I L E S  
FILENAMES 11 12 1 3  14 1 5  i 6  f 7  1 8  19 1 1 0  



THERE ARE 1 0  DIFFERENT EXPERIMENTS 
C i P S  i b e x p l o p 3  f b e x p l l p 3  i D e x p l i o 3  l b e x p l 3 p 3  f b e x p 1 4 p 3  f b s x p 1 7 p 3  f b e x p l 8 p 3  f b e x p l 9 p 3  e x p 1 4 p 3 + c o 1 3  e x p l 4 p 3 + c o n  

9 E S V L T S  ARE AVERAGED OVER 1 0  DIFFESENT SPEECH DATA F I L E S  
' LENAMES m1 m2 m3 m4 m5 & m 7  rBnB m 1 0  

COMPARINGTRA 

" l 2 3 4 5 6 7 8 9 1 0  
THERE ARE 1 0  DIFFERENT EXPERIMENTS 

EXPS: f b e x p l O p 3  f b e x p l l p 3  f b e x p 1 2 p 3  f b e x p 1 3 p 3  f b e x p l 4 p 3  f b e x p 1 7 p 3  f b e x p l 8 p 3  f b e x p l 9 p 3  e x p l 4 p 5 t c o n 3  e x p l 4 p 5 e c o n  
RESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F I L E S  

FILENAMES: 11 12 f 3  f 4  f 5  16 17 f 8  19 1 1 0  



, L -  - ~ 

THERE ARE 1 0  DIFFERENT EXPERIMENTS 
,3 f b e x p l Z p 3  f b e x p l 3 p 3  f b e x p 1 4 p 3  f b e x p 1 7 p 3  f b e x p l B p 3  f b e x p l 9 p 3  expl 

RESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F I L E S  
FILENAMES. m 1  mZ m3 r-4 m5 mj v 7  rr8 nB m10 

THERE ARE 1 0  DIFFERENT EXPERIMENTS 
EXPS: f b e x p l O p 3  f b e x p l l p 3  f b e x p l 2 p 3  f b e x p 1 3 p 3  f b e x p 1 4 p 3  f b e x p 1 7 p 3  f b e x p l B p 3  f b e x p l 9 p 3  e x o 1 4 p 3 + c o n 3  e x p l 4 p 3 c o n  

RESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F I L E S  
FILENAMES: fl f 2  1 3  14 1 5  1 6  f 7  fB  1 9  1 1 0  



TrERE ARE 1 0  DIFFERCNT EXPERIMENTS 
EXPS 'oexplOp3 lbexpllp3 f D e x p l 2 p 3  f b e x 0 1 5 p 3  f b e r p l 4 p 3  f b e x p 1 7 p 3  f b e x p l 8 p 3  f b e x p l 9 p 3  exp14p5tcon3 expl4pjrcon 

RESULTS ARE 4VERAGED OVER 1 0  DIFFERENT SPEECH DPTA F I L E S  

THERE ARE 10 DIFFERENT EXPERIMENTS 
EXPS: Ibexplop3 1bexpllp3 f b e x p l Z p 3  f b e x p 1 3 p 3  f b e x p 1 4 p 3  f b e x p l 7 p 3  f b e x p l 8 p 3  f b e x p l 9 p 3  expl4p3+con3 exp?4p3+con 

RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
FILENAMES: 11 1 2  1 3  f4 15 16 1 7  18 19 1 1 0  



- - 
THERE ARE 10  D I F F E R E N T  EXPERIMENTS 

EXPS f b e x p l O p 3  ' o e x p l l p 3  fbexp12p3 fbexp13p3 fbexp14p3 f b e x p l 7 p 3  f b e x p l B p 3  f b e x p l g p 3  exp14p4ccon3 exp l4p3+con  
RESULTS A9E AVERAGED OVER 10  DIFFERENT SPEECH DATA F I L E S  

F ILENAMES m1 m2 m3 m4 rri5 r r 6 r n 7 m B d  m10 

- .  

THERE ARE 10  D I F F E R E N T  EXPERIMENTS 
EXPS:  I b e x p l o p 3  f b e x p l l p s  f b e x p l 2 p 3  f b e x p l 3 p 3  fbexp14p3 fbexp17p3  f b e x p l 8 p 3  f b e x p l 9 p 3  exp14p>con3 expl4p>cOn 

RESULTS ARE AVERAGED OVER l 0  D I F F E R E N T  SPEECH DATA F I L E S  
F ILENAMES:  11 f 2  f 3  14 15 16 17 f 8  19 110 



THERE ARE 6 DIFFERENT EXPERIMENTS 
EXPS:  o f b l k 6 6 f  a f b 3 k 6 6 f  a f b e x p 2 0  o f b e x p 2 1  o f b e x p 2 2  o f b e x p 2 4  

RESULTS ARE AVERAGED OVER 1 0  DIFFERENT SPEECH DATA F I L E S  
F ILENAMES:  m1 rr;! m3 m4 m5 m6 m7 m8 m9 m 1 0  

COMPARING-AUDITORY-FILTERBANK-PARAMETERS:WOMEN 

1 2 3  4 5 6  
THERE ARE 6 DIFFERENT EXPERIMENTS 

EXPS: a f b l k 6 6 f  o f b 3 k 6 6 f  o f b e x p 2 0  a f b e x p 2 1  a f b e x p 2 2  a f b e x p 2 4  
RESULTS ARE AVERAGED OVER 10  DIFFERENT SPEECH DATA F I L E S  

F ILENAMES:  f l  f 2  f 3  f 4  f 5  16 f 7  f 8  f 9  f1O 



1 2 3 4 5 6 
THERE ARE 6 D I F F E R E N T  EXPERIMENTS 

E X P S .  ofblk66i ofb3k66f afbexp20 afbexp21 afbexp22 ofbexp24 
RESULTS ARE AVERAGED OVER 18 D I F F E R E N T  SPEECH DATA F I L E S  

F I L E N A M E S :  m1 m2 m3m4 m5 & m 7  m8 m9 m10 

COMPARING-AUDITORY-FILTERBANK-PARAMETERS:WOMEN 

THERE ARE 6 D I F F E R E N T  EXPERIMENTS 
E X P S :  afblk66f ofb3k66f afbexp20 ofbexp21 afbexp22 afbexp24 

RESULTS ARE AVERAGED OVER 10 D I F F E R E N T  SPEECH DATA F I L E S  
F ILENAMES:  f l  f2 f3 14 f5 f6 17 18 f9 f10 



THERE ARE 6 DIFFERENT EXPERIMENTS 
EXPS:  ofblk66f ofb3k66f ofbexp20 afbexp21 afbexp22 ofbexp24 

RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
F ILENAMES:  m1 m2 m3 m4 m5 m 6 m 7  m8 m9 m10 

1 2 3 4 5 6 
THERE ARE 6 DIFFERENT EXPERIMENTS 

EXPS: ofblk66f afb3k66f ofbexp20 ofbexp21 afbexo22 afbexp24 
RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  

FILENAMES: f l  f2 f 3  f 4  15 16 f7 f8 f9 f10 



1  2  3  4  5 6  
THERE ARE 6  D I F F E R E N T  EXPERIMENTS 

EXPS: a f b l k 6 6 f  a f b 3 k 6 6 f  o f b e x p 2 0  a f b e x p 2 1  o f b e x p 2 2  a f b e x p 2 4  
RESULTS ARE AVERAGED OVER 10 D I F F E R E N T  SPEECH DATA F I L E S  

F ILENAMES:  m1 m2 m3 rrff m5 m6 m7 m8 m9 m10 

COMPARING-AUDITORY-FILTERBANK-PARAMETERS:WOMEN 

1 2  3  4  5 6  
THERE ARE 6  D I F F E R E N T  EXPERIMENTS 

E X P S :  o f b l k 6 6 f  o f b 3 k 6 6 f  o f b e x p 2 0  o f b e x p 2 1  a f b e x p 2 2  a f b e x p 2 4  
RESULTS ARE AVERAGED OVER 10  D I F F E R E N T  SPEECH DATA F I L E S  

F I L E N A M E S :  f l  12 13 f 4  15 16 17 f 8  f 9  f f O  



1 2  
THERE ARE 

3 
6 D l F F  

4 5 
ERENT EXPERIMENTS 

EXPS: o f b l k 6 6 f  o f b 3 k 6 6 f  o i b e x p 2 0  o f b e x p 2 1  o f b e x p 2 2  o f b e x p 2 4  
RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  

FILENAMES: m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 

COMPARING-AUDITORY-FILTERBANK-PARAMETERS:WOMEN 

V 
1 2  3 4 5 6 

THERE ARE 6 DIFFERENT EXPERIMENTS 
EXPS: o f b l k 6 6 f  a i ~ 3 k 6 6 f  a f b e x p 2 0  o f b e x p 2 1  o f b e x p 2 2  o f b e x p 2 4  

RESULTS ARE AVERAGED OVER 10 DIFFERENT SPEECH DATA F I L E S  
F ILENAMES:  f1 f 2  f3 f 4  f 5  f6 f7 18 f9 110 



1 2 3 4  5 6 
THERE ARE 6 D I F F E R E N T  EXPERIMENTS 

EXPS.  a f b l k 6 6 f  a f b 3 k 6 6 f  a f b e x p 2 0  o f b e x p 2 1  a f b e x p 2 2  o f b e x p 2 4  
R E S U L T S  ARE AVERAGED OVER 10 D I F F E R E N T  SPEECH DATA F I L E S  

F I L E N A M E S :  m1 m2 m3m4 m 5 r n 6 m 7  m8m9 m10 

COMPARING-AUDITORY-FILTERBANK-PARAMETERS:WOMEN 

l 2 3  4 5 
THERE ARE 6  D I F F E R E N T  EXPERIMENTS 

E X P S :  a f b l k 6 6 f  o f b 3 k 6 6 f  a f b e x p 2 0  a f b e x p 2 1  a f b e x p 2 2  a f b e x p 2 4  
R E S U L T S  ARE AVERAGED OVER 10 D I F F E R E N T  SPEECH DATA F I L E S  

F I L E N A M E S :  !l f 2  f 3  f 4  15 f 6  f 7  f 8  19 f 1 0  


